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Abstract—Auction-style pricing policies can effectively reflect the underlying trends in demand and supply for the cloud
resources, and thereby attracted a research interest recently. In particular, a desirable cloud auction design should be (1) online
to timely reflect the fluctuation of supply-demand relations, (2) expressive to support the heterogeneous user demands, and (3)
truthful to discourage users from cheating behaviors. Meeting these requirements simultaneously is non-trivial, and most
existing auction mechanism designs do not directly apply. To meet these goals, this paper conducts the first work on a
framework for truthful online cloud auctions where users with heterogeneous demands could come and leave on the fly.
Concretely speaking, we first design a novel bidding language, wherein users’ heterogeneous requirement on their desired
allocation time, application type, and even how they value among different possible allocations can be flexibly and concisely
expressed. Besides, building on top of our bidding language we propose COCA, an incentive-Compatible (truthful) Online Cloud
Auction mechanism. To ensure truthfulness with heterogenous and online user demand, the design of COCA is driven by a
monotonic payment rule and a utility-maximizing allocation rule. Moreover, our theoretical analysis shows that the worst-case
performance of COCA can be well-bounded, and our further discussion shows that COCA performs well when some other
important factors in online auction design are taken into consideration. Finally, in simulations the performance of COCA is seen
to be comparable to the well-known off-line Vickrey-Clarke-Groves (VCG) mechanism [19].

Index Terms—Online auction mechanism, cloud resource allocation, truthfulness, heterogeneous user demands

1 INTRODUCTION

CLOUD computing is meant to offer on-demand network
access to configurable computing resources, and prom-
ises to deliver to cloud users fast and flexible provisioning
of resources with the freedom from long-term investments
[8]. Such a paradigm has motivated a wide interest in
dynamic and market-based resource allocation mechanisms
in order to dynamically reflect the equilibrium market price,
and provide satisfactory resource allocation for both cloud
consumers and providers [9].

As a quick and efficient approach to selling goods at mar-
ket value, auction-style pricing polices have been widely
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applied, reflecting the underlying trends in demand and
supply for the computing resources. Indeed, an auction-style
pricing policy, so called Spot Instance [1], has been adopted
by Amazon to dynamically allocate cloud resources among
potential users. Such a design has attracted significant atten-
tions from the research community, and prompted a number
of studies [3], [23], [24], [31] on auction-style cloud pricing
mechanism design. More specifically, by means of forecast-
ing the demand of users, [31] tries to maximize the revenue
for the cloud resource provider in cloud spot market via lin-
ear programming, and [23] proposes a suite of computation-
ally efficient and truthful auction-style pricing mechanisms,
so that users can fairly compete for resources and cloud
providers can increase their overall revenue. Abhishek et al.
[3] investigate truthful auction policies under Bayes-Nash
Equilibrium [19] in a spot market model, and [24] focuses on
a optimal segmentation of cloud resources between pay-as-
you-go market and the spot market. More recently, Zhang
et al. [30] design a truthful single-round auction using LP
decomposition. Shi et al. [22] propose the first online combi-
natorial auction for the VM market which is proved to be
truthful and computationally efficient. And in [21], another
combinatorial auction framework is introduced which pro-
vides guarantees in both the provider’s revenue and social
welfare." Although these studies have made significant prog-
ress towards a full-fledged market-driven cloud service, they

1. Detailed definition of social welfare please refer to Section 2.2.
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fail to simultaneously meet the following requirements of a
desirable cloud auction.

1.1 Design Requirements of Cloud Auction

Typical methods such as [1] and [31] apply a pricing policy
that changes periodically, to simplify the cloud provider’s
operations. On the downside, cloud users often suffer from
this simplicity. For example, a cloud user with an uninter-
ruptible job which lasts for more than one period will face
the threat of being outbid and losing its cloud usage in any
of these periods. Plus, as the price only changes periodically
(once per hour; or less frequently in many cases [1], [31]),
the fluctuation of supply-demand relations, which is always
drastic due to the inherent dynamics and burst nature of
user demands, cannot be timely and efficiently reflected.

Cloud users often have a variety of application and valu-
ation types (i.e., with heterogeneous demands). For
instance, users who have analytic or batch jobs to run are
job-oriented: they mostly concern about whether their jobs
can be finished in time [25], [28]. And some other users are
resource-aggressive, e.g., for an SaaS provider who purchases
cloud resources to provision for the peak demand, attaining
enough cloud resources in a specific time interval (rush
hours) is of its primary consideration [8]. Existing studies
[8], [23] only consider cloud users with a single valuation
type for simplicity. Moreover, users’ valuations could be
multi-minded: a bidder may have a valuation of $10 in total
for five VMs, while having a valuation of $8 in total if it gets
three of them. Similarly, a bidder may have a valuation of
$10 if its job is finished in 3 hours, while having a valuation
of $8 if finished in 5 hours. Current designs [1], [21], [22],
[23], [24], [30], [31] cannot reflect such complicated form of
user demands.

Last but not the least, the cloud market could be vulnera-
ble to selfish user behaviors: cloud users may manipulate
auction outcomes and gain unfair advantages via untruth-
fully revealing their preference on cloud resources. These
strategic (or so-called cheating) behaviors will hinder other
qualified users, significantly degrade auction efficiency, and
greatly discourage users from participation. Truthful design
[23] (which ensures that a tenant will maximize its benefit
by bidding truthfully) has been proposed under one-time or
periodic auction settings, which is unable to serve cloud
users come on-the-fly. And analysis under Bayes-Nash
Equilibrium in [3] is not so practical as users are assumed to
have only two different valuations.

1.2 Overview of Our Proposed Framework

This paper conducts the first work on a framework, as
shown in Fig. 1, for truthful online cloud auctions where
users with heterogeneous demands could come and leave
on the fly. First, cloud auctions are all carried out in an
online manner, i.e., bidders can request cloud resources
whenever they need, and their requests are processed by
the cloud provider instantaneously. Such flexibility, in
accordance with the “pay as you go” cloud paradigm,
makes online auctions particularly attractive in practice
[11]. Plus, a bidding language is implemented in the client
side to translate user-specific demands into requests, by
which users’ heterogeneous demands can be restricted to
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regulated and consistent forms while the details of the
requirements can still be revealed. Finally, each request is
then submitted to the server side through web service inter-
faces, and a ftruthful (also called incentive-compatible)
online auction mechanism is implemented so that cloud
users can be rationally motivated to reveal their truthful val-
uations in their requests.

To that end, our first contribution is a novel bidding lan-
guage for our online cloud auction: We categorize bidders
into three typical valuation types, and each of them can be
specified by a valuation function, where users’ valuations
change with respect to the allocation they get. After that,
each type of the valuation function can then be mapped into
a corresponding request form which is more concise and
regulated. Compared with many previous approaches
which are more rigid in terms of the uniformity of request
formats [1], [21], [22],[23], [24], [30], [31], our bidding lan-
guage can flexibility and concisely reflect user requirement
on allocation time/delay, application type, and even how
they value among different possible allocations. We refer to
such flexibility provided by our bidding language in defin-
ing user demand as “expressiveness”.

On the downside, such expressiveness provided by our
bidding language greatly complicates the problem of ensur-
ing truthfulness, and existing auction mechanism designs
[14], [15], [17], [26] cannot be directly applied. Therefore we
present COCA, a truthful (incentive-compatible) online
cloud auction mechanism building on top of our proposed
bidding language. COCA is composed of two main building
blocks: (1) a payment-function-based payment rule which is
uniquely determined by the allocation result and the
request submission time, and (2) an allocation rule that tries
to maximize bidders’ utility, which are proved to be the
necessary and sufficient conditions for ensuring truthful-
ness. Based on these two rules, COCA ensures truthfulness
by introducing a nondecreasing auxiliary pricing function
in terms of the current supply-demand relations. After
truthfulness is ensured, extensive theoretical analysis shows
that the worst-case performance of COCA can be well-
bounded, and further discussions show that COCA
performs well in terms of other desired properties. Finally,
in simulations the performance of COCA is seen to be com-
parable to the well-known off-line VCG mechanism.

The remainder of the paper proceeds as follows:
Section 2 introduces our auction model and biding lan-
guage. Section 3 presents COCA mechanism for online
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Fig. 2. An illustrative example of the online cloud auction.

auctions. Section 4 conducts the competitive analysis of
COCA. Section 5 discuss about COCA’s performance in
terms of some other important factors. Preliminary simu-
lation results are illustrated in Section 6. Finally Section 7
concludes the paper.

2 AucTION MODEL AND BIDDING LANGUAGE

2.1 Online Auction Model for Cloud Resources

The auction procedure is shown in the left part of Fig. 2,
cloud user (bidder) ¢ with a specific valuation v; (defined
below) for the cloud resource arrives at an arbitrary time,
maps (translates) its valuation into a request (bid) r;, and
then submits r; to the resource provider. After receiving the
request, the resource provider is committed to determine
the allocation y; and the payment pay; immediately accord-
ing to the adopted auction mechanism.

Resource—As shown in Fig. 3, we consider one cloud
resource provider (e.g., a single data-center) who has a large
number of computational resources [1], [8] with a fixed
capacity () in an infinite time interval [0, oo} [21], [22], [30].

Allocation Payment—An allocation y; presents how the
resources are allocated to a cloud user i. A typical allocation
¥4, as shown in Fig. 3, presents the usage of cloud resource
from 6:00 to 9:00 with a fixed 10 units of cloud capacity. As
such, if we denote the start time (end time) of an allocation
viast, (t;) (as is shown in Fig. 3 for allocation A), an allo-
cation y; can be regarded as a function over ¢, where y,(t)
(t € [t;,.t;]) is the instantaneous quantity of resources allo-
cated to the user at time ¢. Additionally, like y in Fig. 3, the
capacity allocated is not necessarily time-invariant, in this
paper we assume that y;(¢) can be varying within the range
[0,9], and we denote all possible allocations to some user ¢
as a set I';. Moreover, we use y; € I'; to denote the allocation
decision: the allocation finally determined for bidder ¢ by the
adopted auction mechanism, and we use pay; € R to repre-
sent the amount of money user i is required to pay.

Valuation—The valuation of bidder ¢ is a function
v; : I = R, representing the benefit bidder i obtains from
receiving a certain allocation y; of the cloud resource. Note
that the valuation is known only to the bidder himself. Con-
sider a cloud user with a job of size 40 (it takes 40 units of
resource capacity running for one time unit to finish the
job), who has a valuation of $10 if the job is carried out
within [6:00,9:00]. The corresponding valuation function is
presented in the right part of Fig. 2.

Utility—The utility u;(y;) refers to the “net profit” bidder
¢ gets from an allocation y; [19], that is, w;(y;) = vi(y;)—
pay;. As bidders are assumed to be selfish, they may
untruthfully reflect their bidding parameters in their
requests in order to maximize their utility.
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Fig. 3. The cloud resource and the presentation of allocation y;.

Social welfare—As a commonly used criterion to evaluate
the performance (outcome) of an auction mechanism, social
welfare refers to the sum of all the valuations of the allo-
cated resources. Specifically, for any request sequence t, the
social welfare is defined as E(t) = >, ., vi(¥]).

Request—To apply for cloud resources, a cloud user ¢
submits a request r; to the provider representing his valua-
tion for the resource. A request is always represented as a
set of bidding parameters. Recall the example shown in the
right part of Fig. 2, obviously, in this case a concise request
form of r; = {6:00,9:00,$10, 40} is enough to reflect the entire
valuation function. Here we call such mapping from valua-
tions to requests as bidding language. Besides, we denote the
submission time of request ¢ (the time ¢ arrives at the market)
as t,,;- Note that we allow users to reserve resources, that is,
in the above example user ¢ can submit its request at any-
time before 6:00.

2.2 Bidding Language for Heterogeneous User
Demands

In this subsection, we turn to the mapping from valuations
to requests. In practice, the user valuations are heteroge-
neous and often have complicated forms in the cloud mar-
ket. This leads to a dilemma: how can we present such
heterogeneous valuation in requests with a concise and regulated
form? In response, we put forward in this paper a bidding
language, by which the representation of requests captures
as many features of the heterogeneous demands as possible,
while keeping itself concise and consistent.

One challenge here is that a single request type cannot
reveal the diversity of users’ valuation types. As such, after
investigating some different user requirements in cloud
computing [5], [8], [9], [23], we categorize bidders into three
typical valuation types, each with a corresponding valua-
tion function. After that, each of the valuation functions is
mapped into a corresponding concise request form respec-
tively. As a result, each bidder can translate its specific valu-
ation into a concise request according to its own type.

Valuation TYPE I: Job-oriented users.Valuation TYPE I: Job-
oriented users. Analytic and batch jobs account for a large
population in the cloud market [5], [8]. Generally, a job-ori-
ented bidder ¢ has a job with size size;, and the job should
be carried out within a time period [a;,d;] (a; denotes the
earliest available time, and d; denotes the deadline). It's
worth mentioning that as we allow users to reserve resour-
ces, a; can be greater or equal to ¢, in all three valuation
types. Typically, bidder ¢ has a valuation b_total; if the job is
finished before the deadline d;, otherwise the longer the
delay delay; is, the less the valuation will be [28]. To model
this, we assume each bidder has a specific penalty rate
pen_rate; representing its valuation loss per unit delay time.
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Fig. 4. The valuation function of three types of users.

As shown in Fig. 4a, we can specify the valuation function
v;(y;) of job-oriented users as:

vi(Vi) = {
(1)

where delay; = maz(t; — d;,0) uniquely corresponds to a
given allocation y;. Recall the example shown in the right
part of Fig. 2, obviously it belongs to such valuation type
with pen_rate; equals co. Accordingly, a request with the
form: r1; = {a;,d;, pen_rate;,b_total;, size;} is capable of
reflecting the TYPE I valuation function.

Valuation TYPE II: Resource-aggressive users. For another
typical kind of bidders, the biggest concern is to get suffi-
cient number of resources in a specific time period. Such
requirement is widely considered in traditional auction
market settings, and it is also quite common in the cloud
market. As an example, for an SaaS Provider who wants to
provision for its peak-load during the rush hours [a;, d;] [5],
the more resources it acquires within such period, the more
benefit it may get. As is shown in Fig. 4b, such a valuation
function v; of TYPE II can be specified as a nondecreasing
concave function b;(-), with respect to the total quantity of
resource total_rsc; allocated to bidder 7 within the preferred
time period [a;, d;]. So we have: v;(y;) = b;(total_rsc;), where
total_rsc; = [} d/‘ yi(t)dt. Accordingly, the request i of TYPE II
can be organized as: t; = {a;, d;, b;(total_rsc;)}.

Valuation TYPE III: Resource-agQressive users with time-
invariant capacity requirements. Some users may be in need of
time-invariant computing power. So for the third type, we
consider users that require an invariable capacity of com-
puting power (as the resource model in [4], [8]). Typically,
such a cloud user ¢ may request cloud resources of invari-
able capacity for a time length /;, within a preferredte time
duration [a;,d;] (I; < d; — a;). And the valuation can be pre-
sented by a concavely increasing function b;(-) with respect
to the invariant capacity inv_cap; allocated to him. For
example, a user may have a valuation of $10 in total if
inv_cap; = 5 (five VMs allocated to him), or a valuation of $8
if inv_cap; = 3. Accordingly, we have v;(y;) = b;(inv_cap;)
-l;, where inv_cap; = Ml o 1(¥:(t)). Such a request can

b_total; — delay; - pen_rate; if fjﬁdela‘% y;(t)dt > size;
0

elsewhere,

be organized as: r; = {a;, d;, l;, b;(inv_cap;)}.

Assumptions. First, aiming at a compelling user experi-
ence, preemption [13] is not allowed. Second, we do not
assume any specific distribution of bidding parameters in

the request r;—we only apply a very general assumption
that the unit valuation (the valuation for one unit resource
per unit time) is within a known interval [p,p], and the

job length of Type III bidders is within the interval [, ] in
order to bound the social welfare.”

A simple tenant-provider interface design. In cloud market
some users may not have a very good knowledge of their val-
uation functions, and some may have difficulty specifying
their valuation functions. To make our bidding language one
more step towards a practical and implementable design, we
propose a simple interface to help users estimate their valua-
tion function easily. Fig. 5 introduces the interface with a
Type Il user taken as an example.

Client Side: First, instead of reporting the valuation
function b;(total_rsc;), a user can submit several critical
parameter-value pairs, each representing a specific
total_rsc; and the corresponding valuation (a point on the
valuation curve).® Then after providing a coarse-grained
localization of the valuation function in step 1, the user
should also specify its regression type (e.g., linear, piece-
wise linear, quadratic), in order to further detail the shape
of the function.

Server side. With the given user type, critical parameter-
value pairs and regression type, the provider is able to gen-
erate an initial valuation function using regression analysis.
And finally, for some regression types, further modification
is implemented to maintain the concavity and monotonicity
of the function.

With the above interface, a user who knows its
demands for crystal clear can get a precise valuation func-
tion estimation by providing many critical parameter-
value pairs (or by submitting the valuation function
directly), and for users without a sound knowledge on
their valuation, the submission of two or three parameter-
value pairs will also provide a coarse estimation. In addi-
tion, we note that such interface can also be extended to
enable more complicated regression types, while a more
sophisticated user valuation estimation design is beyond
the scope of this paper.

2. Besides, it is also worth mentioning that the concavity assumption
on b;(-) for Type IT and IIT users is only used later in the worst-case per-
formance analysis (Section 4), and does not affect our analysis on ensur-
ing truthfulness.

3. Pair (0,0) is added by default as we assume users always have 0
valuation if they get nothing.
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2.3 Performance Metrics for the Auction Mechanism
Truthfulness (also called incentive-compatibility) is one of
the most critical property of auction mechanism [19]. As
mentioned in Section 1, an auction could be vulnerable to
market manipulation without truthfulness-guaranteed.

Definition 1. (Truthfulness) An auction mechanism A is said to
be truthful if, for any bidder i, regardless of the behaviors of
other bidders, declaring a bid that truthfully reveals its valua-
tion can maximize its utility.

Existing pricing designs for cloud market [23], [24], [31]
typically target at achieving the “optimal” allocation perfor-
mance on revenue or social welfare. However, the optimal
solution generally needs further information of the variation
of user demands, which is very hard to estimate. To this end,
in this paper we focus on an alternative problem: without
assumptions on any specific distribution information on
bidders’ arrival or valuation, how can we achieve a good worst-
case performance on social welfare? To evaluate the worst-case
performance of an auction mechanism by its social welfare, a
commonly adopted way is competitive analysis [14], [17]—
to compare the allocation performance against the optimal
offline solution—VCG mechanism.

Definition 2. (Competitive ratio on social welfare) An auction
mechanism A is {-competitive with respect to the social welfare
if for every bidding sequence t, EA(t) > Evea(t)/¢. Accord-
ingly, ¢ is the competitive ratio of A.

To that end, next in Section 3 we propose the online auc-
tion mechanism, called COCA, along with the proof for the
truthfulness, followed by Section 4 where we conduct exten-
sive competitive analysis on COCA.

3 MECHANISM DESIGN: ENSURING TRUTHFULNESS

In this section, first we present the challenges on ensuring
truthfulness under our proposed online cloud auction
model, which is followed by an in-depth analysis of design
methodology for ensuring truthfulness. Then based on such
design methodology, a truthful online cloud auction mecha-
nism COCA is proposed building on top of our proposed
bidding language in the previous section. Finally, exten-
sions of COCA is discussed at the end of this section.

3.1 Design Challenges on Ensuing Truthfulness
Truthful online mechanism design has been extensively
studied lately. Lavi and Nisan [17] first proposed the
paradigm of truthful online auction and performed com-
petitive analysis on both revenue and efficiency(social
welfare). After that, many online mechanisms have been
proposed under a great variety of scenarios, e.g., goods
with limited supply [15], digital goods with infinity
supply [7], and gradually expiring goods [18], etc.
Accordingly, a question raises intuitively: Can we simply
adopt some existing auction mechanisms to achieve good alloca-
tion performance?

Compared with most existing online auction settings,
the expressiveness of our auction model are two-fold:
First, to be more expressive, we consider more than one
typical valuation types, each with a request form with
more than one bidding parameter. Second, users’ valua-
tions are modeled as functions in terms of the allocation
results they obtain. Undoubtedly, such an auction setting
is more in accordance with the cloud market, however
on the downside it greatly complicates the problem of
ensuring truthfulness.

Unlike in single parameter settings where truthfulness
can be characterized by a monotonic allocation rule and a
critical payment rule [19], ensuring truthfulness is gener-
ally much more difficult in our auction setting with such
expressiveness. As for our cloud auction model, cloud
users might get extra benefit by cheating on any of the
bidding parameters or even their valuation types. Spe-
cially, cloud resource is a kind of reusable goods [14]:
instead of obtaining the resource forever, the cloud users
are actually rentingthe usage of the resource for a certain
period of time. As a consequence, bidders’ valuations
depend not only on the amount of resource allocated to
them, but also on the time period where (and for how
long) the resources are allocated to them, which makes
online cloud auctions vulnerable to various types of “time
cheating” [11], where users can strategically submit a
false arrival and departure time to get a better allocation.

One related online auction mechanism design for reus-
able goods is presented in [14], and later adopted in
online spectrum auction in [11]. However, such design is
no longer available under our cloud auction model: First,
considering the heterogeneous and complicated request
form in our cloud auction model, the proposed algorithm
cannot be directly used for Type I and Type II users. Sec-
ond, remind that in our cloud auction model, users are
allowed to reserve resources, such auction setting makes
the assumption of no early arrival and no late departure [14],
[20] no longer valid in our cloud auction model. Accord-
ingly, if we adopt the mechanism in [11], [14] to Type III
users, users can get extra benefit by strategically reporting
two or more of their bidding parameters(e.g., an earlier
earliest available time a; together with a longer job length
l;, or a later deadline d; together with a higher biding
price function b(-)) together). In addition, other truthful
designs [26], [27] with specific user distribution for spec-
trum allocation cannot be applied since in our model no
specific distribution information is assumed. Therefore,
we believe an in-depth analysis on truthful mechanism
design under our proposed model is worth the effort.
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3.2 Design Methodology on Ensuring Truthfulness
3.2.1 How to Determine the Payment

Under our proposed auction model, the payment of a
bidder ¢ can be generally considered as a function:
pay; = pi(V;, tsuy, 1i)-- However it may not be the simplest
form of the payment function as the parameters are not
totally independent. Indeed, the following lemma shows
that the payment function can be further simplified as

payi = Pi(Vis tsub;)-

Lemma 1. For any truthful auction algorithm A, given y; and
touv;, the payment should be uniquely determined for any bid-
der i regardless of its request 1;.

Proof. We prove it by contradiction. Given some y; and ¢,
assume that there are two different requests r; and r; with
Di(Vi tsuby» Xi) > Di(Vi, tsub,, ¥i). In this case, a bidder with
true request r; will increase its utility by declaring r;.
Therefore the auction is no longer truthful, completing
the contradiction. O

Next we discuss how y; and t,,, are correlated to the
payment function p; (y;, teuw, )-

Definition 3. (Monotonic with allocation) We say y; = v if
Y, yi(t) > yi(t). A payment function p; is monotonic with
allocation if for any t,,, and any allocation y; = y;, we have
pi(y{,a tSubi) > pi(y;a tsubi)~

Definition 4. (Monotonic with submission time) A payment
function is monotonic with submission time if for any alloca-
tion y; and any submission time tou, <t we have

sub;”
pi(yi: t;ubi) > pi(yi: tsubi)'

Given the above definitions, we are now ready to present
the following theorem about how to decide the payment in
order to ensure truthfulness.

Theorem 1. For any truthful online auction mechanism A, the
payment for any bidder i can be determined by a payment func-
tion p;(y;, tsuy; ), which should be monotonic with submission
time and monotonic with allocation.

Proof. We prove it by contradiction. First, assume that p; is
not monotonic with allocation, that is, there exists a bid-
der ¢ with two possible allocation decisions ¥} = y;, such
that p;(y;, tsus;) = pi(V}, tsw,;). Denote r; and r; as the
requests lead to these two allocations respectively, then
bidder ¢ with truthful request r; will increase its utility by
declaring request r;. That's a contradiction with the fact
that A is truthful.

Second, we assume that p; is not monotonic with sub-
mission time. That is, for some request r; with submis-
sion time top,, Pi(Vs,teu;) = Di(Vi ,t;“b/,’) holds for some
t;ubi

declaring the same request r; at such a later submission

time # ;. That is also a contradiction with the fact that .A

is truthful. O

> teu,- In this case, user i may increase its utility by

4. The function can be more formally written as
pay; = pi(Vi, tous; » i, P), where & denotes all the parameters which can-
not be directly affected by the user strategy. Note that it is not necessary
to explicitly show @ in our analysis about truthfulness due to ®’s inde-
pendence of user strategy.
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Theorem 1 provides a payment rule which serves as a
necessary condition to ensure truthfulness. Intuitively, a
bidder may strategically delay its submission time t,,,, or
try to manipulate the allocation decision by reporting an
untruthful request r,, so a later submission time, or a
“better” allocation should lead to a higher payment.

3.2.2 How to Determine the Allocation

In response to the above payment function, we resort to a
general allocation rule.

Proposition 1. (Nisan et al. [19]) For any truthful auction
mechanism A, the auction mechanism optimizes for all bid-
ders, i.e., the allocation decision maximizes the utility gain
for each bidder i.

Proposition 1 provides a generalized necessary condition
to ensure truthfulness, and following this route, we present
our guideline of how to determine the allocation under our
auction model:

Theorem 2. For any auction mechanism A, denote all possible
allocation results to some bidder i as a set I'; 5, then for any bid-
der i the auction mechanism A will try to maximize its utility
according to the constraint I';4 and its request r;. More for-
mally we have

y:( = argmay,cr; , (57()4) - p1(y17 tsub,, )) 75 (2)

where v;(y;) is the valuation function learned from request r;,
and y} is the allocation finally determined for bidder i.

Proof. We prove this theorem by contradiction. Assume the
allocation decision for bidder ¢ does not maximize
(vi(y) — pay;), and we denote such an allocation as
v, € {I'}. Let y; € I'i4 be the allocation that maximizes
(0i(y) — pay;), and let r{(y) be some other bidding price
function, by submitting which bidder ¢ can get the alloca-
tion y,. So, if the resource provider makes an allocation
v, # y;, bidder i will increase its utility by declaring a
request rj(y). It then contradicts with the assumption
that the auction is truthful. So Eq. (2) must be satisfied to
ensure truthfulness. O

Theorem 2 provides an allocation rule which serves as
another necessary condition to ensure truthfulness in our
cloud auction model. To help better understand the theo-
rem, it is worth mentioning that I';4 may not be equivalent
to I';, which is the general set of all possible allocations. On
one hand, the auction mechanism .4 may restrict the possi-
ble allocation results. As an extreme example, an auction
mechanism which refuses all the user requests (I';4 = () can
be truthful as it satisfies Eq. (2). On the other hand, in an
online auction the possible allocation results at some time
can also be restricted by the previous allocation decisions.
More specifically, for some bidder ¢, I';4 may be restricted
for the reason that all the resources in the interested time
period have already been allocated to bidders with submis-
sion time earlier than t,,y,.

5. Here we adopt a general assumption that p;(0, ts.,) = 0 (a user
always pays 0 if it gets nothing), thus users will not receive negative
utilities.



ZHANG ETAL.: AFRAMEWORK FOR TRUTHFUL ONLINE AUCTIONS IN CLOUD COMPUTING WITH HETEROGENEOUS USER DEMANDS 811

3.2.3 Necessary and Sufficient Conditions for Ensuring
Truthfulness

The previous subsection has provided a payment rule (in
Theorem 1) and an allocation rule (in Theorem 2), both of
which serve as necessary conditions to ensure truthfulness
in our cloud auction model. More interestingly, in this sub-
section our further analysis shows that these two rules
together also serve as the sufficient conditions for ensuring
truthfulness.

Let r; be any untruthful request derived from the truth-
ful request r; by making arbitrary changes on the reported
valuation function 7;(y;) (changing any of its bidding
parameters or its request type). In this case we have the fol-
lowing theorem:

Theorem 3. An online auction mechanism A is truthful if and
only if for any bidder i

1)  the payment can be determined by a payment function
Di(Vi, tsun, ), which is monotonic with submission time
and monotonic with allocation;

2)  the auction mechanism A will try to maximize i’s util-
ity according to the constraint I';4 and i’s request r;,
that is, V:F = argmayer,; 4 (@(V;) - pi(yiv tsub,,j))-

Proof. 1) Proof of the “only if” part: please refer to the proofs
of Theorem 1 and Theorem 2.

2) Proof of the “if” part: Let r'; be any untruthful
request derived from the truthful request r; by making
arbitrary changes on the reported valuation function
U;(y;)(changing any of its bidding parameters or its
request type) and the submission time ¢, (changed to
teu,)- Denote u;(r;) and u;(r";) as the utility bidder i gets
by submitting request r; and r”; respectively.

First, it is derived from Theorem 2 that y; maximizes
u;(y;). Therefore, if we denote the allocation decision for
reporting r; and r! as y;, and y/ respectively, the follow-
ing inequation holds:

U; (rz) = (Vj) - pi(y;‘k’ tsubz-) > Ul(y;,) - pi(y;/v tsubi)- (3)
Second, note that the true submission time is defined as
the time that a user arrives at the market, which is also
the first time it is aware of its demand. Thus, it’s not pos-
sible for any user to report a submission time earlier than
its true submission time [14]. Since p;(y;, tow,) is mono-
tonic with submission time, we have p;i(y;, tsw,;) <
pi(vi ty,,) forany y; and £, > t.,. Hence the following
inequations holds:

vi(y)) = piVi s tswn) = 0i(y)) — pi(y] tow,) = w(r)). (@)

Eq. 3) and Eq. 4) imply that u,(r;) > u,(r/). This
result demonstrate that reporting the true request r;
always results in a better utility than reporting any
untruthful request r. That is, the auction is truthful if the
payment rule in Theorem 1 and the allocation rule in
Theorem 2 are adopted, the theorem holds. a

3.3 COCA: A Truthful Online Cloud Auction Design
Motivated by the aforementioned design methodology, let’s
turn to the design of COCA in detail. We start with

Q

Capacity

1
24:00

=Y

0:00

T +
1, =10:00 7;p=15:00

Fig. 6. The utilization rate U(t,t,) with ¢, = 10:00 and the auxiliary
pricing function P(z).

introducing how we construct the payment function p; for
every coming bidder ¢ such that it is monotonic with alloca-
tion and submission time.

3.3.1 Payment Function Construction

Intuitively, COCA’s payment function is committed to
reflecting the current equilibrium market price—the
resource should be charged more in “hot” time periods
(where there are a greater number of user demands). Similar
to [17], COCA exploits an auxiliary pricing function P(z) with
respect to the current utilization rate U to help the resource
provider decide the payment function.

Reserved resource utilization rate U. Note that COCA
allows a bidder to reserve resources that are not available in
the current time period. To that end, we define a variable—
the reserved resource utilization rate U (we call it utilization
rate for short henceforth). Formally, denote all the allocation
decisions y;,i = 1,2... made by time ¢, as a set I';,, then we
have U(ty,ts) = nyeftz yi(t1)/Q. Obviously we have

U € [0,1]. With such a definition, U can clearly reflect the
status of how the cloud resources are allocated (reserved) at
time t; according to the allocation decisions made by time
ty. As an example, Fig. 6 shows the utilization rate within
one day (¢; € [0:00,24:00]) by the time ¢ = 10:00. A high uti-
lization rate is observed at U(11:00,10:00), which indicates
that the resources at time #;4 =11:00 have almost been sold
out by 10:00. On the contrary, a low value at U/(15:00,10:00)
implies that there are still a lot of unallocated resources at
time ¢, 3 = 15:00 by 10:00. Specifically, we denote U (t1, tsu,; )
(U(t1,t},,)) as the utilization rate at time ¢, before (after) the
allocation of request r; submitted at ,,,. Accordingly we
have U(tl,t;bi) —U(t1, tew,;) = vi(t1)/Q. In addition, it’s
obvious that V¢, 2, we have ty < th, = U(t1,t2) < U(ty,1)).

Auxiliary pricing function P(z): To help the resource
provider determine the payment function, in COCA we
introduce an auxiliary pricing function P(x) which is prede-
termined by the resource provider before the auction pro-
cess. P(x) explicitly presents the “marginal price” with
respect to the utilization rate. That is, for any piece of alloca-
tion y; with

th —t, =Al—0
Vi Yi (5)
vi(t) =Aq—0 Vtelt, )]
The payment for such y, is calculated as:
pt(ym tsubi) - P(U(t;@, tsubi)) : Al : AQ7 (6)

where U (t;y ,tsu;) Presents the utilization rate reserved at t,
by the time user ¢ submits its request.
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Algorithm 1. COCA Mechanism Design

Input:
1) The request sequence t: {rj,rs,r3,...
ts’ubl < ts’ubg <...< tsubx ;
2) A nondecreasing auxiliary pricing function P(z)
Output:
1) The allocation decision y; for each request r;;
2) Payment decision pay; for each request r;

I}, such that

1: Initialization of the utilization rate:

2: Vitel0,00], Ut teurrent) = 0 % teyrrent Tefers to the current
time.

3:  fori=1tooc do

4 Constructing payment function:

5 piitan) = L2 o) 02 oy . Qddt

6: Allocation rule.

7: Check the type type; of r;;

8 switch type;

9 case 1 % Allocation determination for Type I bidder:

yi = argmazy,, (b-total; — pen_rate; - delay; —
st VE Ut tew,) +v:(8)/Q < 1

~d;+delay;
/ yi(t) > size;
a;

where delay; = maz(t; — d;,0)
% Find the allocation that maximizes i’s utility if the job is
accepted.
10:  if byorar; — pen-rate; - delay;
11: setyf =10
% If the maximum utility of accepting the job is
negative, then reject the job.
12: endif
13: end case
14: case 2 % Allocation determination for Type II bidder:

pi(Vi, Lsub, )

— (¥} tsu,;) < 0 then

y;‘ — argma.?,’{yi}(bi(totalj”sci)
St Ve U(t, tew,) +v:(1)/Q < 1

where total_rsc; = jad’ v, (t)dt
% Find the allocation that maximizes i’s utility.
15: end case
16: case 3 % Allocation determination for Type III bidder:

- pi(yiv tsub, ))

y; = argmazy,, (b;(inv_cap;) - I;
5.4 V8, Ut o) +7i(8)/Q < 1
Vit € [t 6] ] inv-cap; = (1) = y4(t2)

— Di (yn tsuhi))

% Find the allocation that maximizes 4’s utility.
17: end case
18: end switch
19: Payment rule:
20: pay; = pi(y;: tVSub,)
21: Updating the utilization rate:
22: Vte [f*_ f*+} U(t7 tcurrent) = U(t, tcurrent) + y:(t)/Q

Yi? Vi

23: end for

In such a way, the total payment for any y, can be calcu-
lated by dividing it into such small pieces and summing
them up, thus our payment function has the following form:
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J(t ssub; )+vi(0)/Q

V“ sub / /
tteub

It is noted that given a nondecreasing P(z), the payment
function satisfies all the necessary conditions given in Theo-
rem 1 to ensure truthfulness. Moreover, we note that the
outcome of COCA (e.g. revenue, social welfare, etc.) directly
depends on the choice of P(x), and a provider-specific P(z)
can be implemented in order to realize different perfor-
mance goals. Later in Section 4 we will show that COCA’s
allocation performance with respect to social welfare greatly
depends on the choice of such P(z), and a good competitive
ratio can be achieved by carefully designing P(z).

P(z) - Qdxdt.  (7)

3.3.2 Mechanism Description

We now describe our design of COCA, shown in Algorithm
1, step by step:

e Step 1: Lines 4-5 (Constructing payment function). For
any bidder i, the payment function is given as

sub, + lf>/Q
Pi(Vis tsub;) ﬁ" fU<, tb’ "W p(2) . Qdxdt, where

P(x) can be any nondecreasing function.

e  Step 2: Lines 6-18 (Allocation rule). The allocation tries
to maximize the utility gain for each bidder 7 accord-
ing to its request r; and the current utilization rate,
that is

y;k = argma"ry'(%'i(y') - pi(yivtmbi))

6.4 Uty ta) + v;(1)/Q < 1, ©

where v;(y;) is the valuation function learned from
the request 1;.

e  Step 3: Lines 19-20 (Payment rule). Determine the pay-
ment according to the payment function p; and the
allocation decision y;: pay; = p; (v}, tou,)-

o Step 4: Lines 21-22 (Updating the utilization rate).
Update the utilization rate U according to the alloca-
tion decision ;.

Following the above steps, we present our detailed
design of COCA in Algorithm 1. It is shown that as bidders
are categorized to the three valuation types introduced in
Section 2.2, corresponding allocation rules can be applied
accordingly. As a consequence, it is not surprising that
truthfulness can be ensured by such mechanism design:

Theorem 4. COCA is a truthful auction mechanism under our
online cloud auction model.

Proof. According to the mechanism description, the pay-
ment rule and allocation rule of COCA satisfies the rules
proposed in Theorem 3, then in line with Theorem 3,
COCA is truthful under our online cloud auction model.O

Meanwhile, such a design spontaneously balances the
workload. Since according to the allocation rule, users will
be more likely to be allocated in time durations where the
current utilization rate is lower, as the payment will be
lower according to p;(y;, teuw,;) (With a nondecreasing P(z)).

Remark: One may argue that COCA offers less flexibility as
the allocation and payment is based on the auxiliary
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pricing function P(z). More accurately, we note that the
allocation and payment of COCA mechanism for any
bidder i is determined by the following three factors: (1)
the request r;; (2) the requests which have been accepted
before bid i; (3) the auxiliary pricing function P(x). Actu-
ally, for online cloud auction design, it is always the case
that: To ensure truthfulness under a more complex
model and a more general assumption, the designed auc-
tion mechanism has to suffer from less flexibility. This is
also the reason why we introduce the auxiliary pricing
function P(z) to help determine the payment. Essentially
speaking, without further restrictions or assumptions,
there exists a general trade off between the generality of
auction model and the flexibility the auction algorithm
can enjoy.

Algorithm 2. COCA* Mechanism Design

1
2: Allocatlon rule:
3:  for any incoming request r; do
4: if r; belongs to one of the 3 valuation types then
5: goto Algorithm 1
6: else
7 Determine the allocation by the general allocation
rule:
y; = argmaz,, (¥ (y,) - pi(vis o)
st VE U tsw,) +7:(0)/Q <1
8: end if
9: end for
10:

Extension to general valuation types. While we claim that
the three valuation types in our model are typical, they are
by no means exclusive in our auction mechanism. Instead,
COCA can be extended (denoted as COCA™) to deal with
any other type of heterogeneous user demands, and the
extension only requires minor modification in the allocation
rule. As is shown in Algorithm 2, if a user does not belong
to any of the three given valuation types, he can submit its
request in a general form r; = v;(y;), reflecting its valuation
with respect to the allocation y;. Consequently the allocation
will be determined according to the general allocation rule
shown in Step 2. By doing so, COCA™ remains truthful for
any unknown type of user demands.®

Extension to multiple resource types. COCA can be further
extended (denoted as COCA**") to fit a more general
resource model with multiple kinds of cloud resource types,
such as computing resources, bandwidth, storage capacity,
etc. Denote the generalized resource model as an n-dimen-
sional vector Q = {Q1,Qs,...Q,}, with each component
corresponds to the resource capacity of one resource type.
As such, the allocation to some bidder 7 can be considered
as a corresponding n-dimensional vector y; = {yy;, Vs,

.- Vni}, and similarly the utilization rate can be considered
as U= {U;,U,,...U,}. In this case, users can submit its
request in a general form 1; = v;(y;), reflecting its valuation
with respect to the n-dimensional allocation y;. If we do not

6. This can be proved in the same way as we did in Theorem 3.

consider the correlation of price among different resource
types, a set of functions: P = {P;(z1), Py(x2),, (z,)} can be
applied to ensure truthfulness if d(Py(x)))/dz; > 0 holds
Vk = 1 to n. The detailed design is shown in Algorithm 3.

Algorithm 3. COCA** Mechanism Design
1:

2:  for any incoming request r; do
3: Constructing payment function:
4.

Un( t"sub, +y1(t
yu subz
ly: k 17 Un llsub

Vi
Allocation rule:
6: Determine the allocation by the general allocation rule:
vi" = argmazy, (0;(v;) = pi(¥Vi tsun; )
s.b. VE,m, U (t, toun,) + i (1) /Qn < 1

n(az) - Qpdxdt  (9)

iS4

7 Payment rule:

8: pay; = pi(yi*> tsubi)

9: Updating the utilization rate:
0 vt e [t*}:v t;Jr} U(t7 t(:urrem‘,) = U(t, trfurr@nt) + )’l*(t)
1: end for

4 MEeCHANISM DESIGN: ACHIEVING A NONTRIVIAL
COMPETITIVE RATIO ON SocCIAL WELFARE

Based on the above mechanism design of COCA, truthful-
ness can be ensured by the implementation of a nondecreas-
ing auxiliary pricing function P(z). Now we have the
following two problems still unsolved—(i). how to determine
the auxiliary pricing function P(x)? (ii). how can COCA achieve
a nontrivial competitive ratio on social welfare (defined in Section
2.2)? In this section we show that the answers to these two
questions are closely correlated—the competitive ratio
highly depends on the auxiliary pricing function P(z).
Moreover, we show that the competitive ratio of COCA can
be well-bounded by appropriately constructing the auxil-
iary pricing function P(x).

4.1 Competitive Analysis for a Single Bidder Type
In this subsection, we consider the scenario where the cloud
users in a request sequence 7 only belong to a single request
type. In the following analysis, we will show how the com-
petitive ratio of COCA on social welfare is determined by
the choice of the auxiliary pricing function P(z).

4.1.1 Competitive Analysis for Type Il Bidders

Recall that we apply a general assumption that the unit valu-
ation (the valuation for one unit resource per unit time) is
within a known interval [p,p]. Under such assumption,
denote the social welfare achieved when VCG (COCA) is
applied as Evee (Ecoca), we have the following theorem for
Type II bidders:

Theorem 5. For any request sequence t consisting of Type II
bidders, we have Epoc a(t) > Evpp(r) /(1 + g2), where gy =

@)/ Jy P

7. As P is not necessarily strictly increasing, here we simply denote
P~!(z) as the maximal value y which satisfies 2 = P(y).

MAT (e p-1 ()11}
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Theorem 5 indicates that any sequence composed of
Type Il bidders has a competitive ratio of 1 + g, where g, is
directly determined by the auxiliary pricing function P(z).
Thus, we can minimize the competitive ratio by solving the
following optimization problem:

T
mln{p(w)}gg = max{‘ve[pq(g)’lﬁp(x)//o P(u)du
p

St.P(p) = P(p) + / (P (x))de <1,

B P

where the inequality constraint implicitly insures that the
quantity of resource allocated at any time should be less
than @ (i.e.,utilization rate less than one). To solve this,
we use a similar technique in [12], [17], figuring out an
auxiliary pricing function P;(z) such that the competitive
ratio can be minimized.

Corollary 1. For any request sequence t consisting of Type II bid-
ders, with auxiliary pricing function

p/elt—a)r 1r<z<l1

e r<z s

Py =1 ” frses (10)
D 0<z<1/r

COCA is (1 + r)-competitive where r = 1 4 In(p/p).

4.1.2 Competitive Analysis for Type | Bidders

Achieving a good competitive ratio in the general case with
no further constrains or assumptions is more difficult for
Type I bidders. The reason is that a user of high unit valua-
tion together with a very high penalty rate may be directly
rejected if it is blocked by previous allocations. Instead, here
we consider a common but less general case in which the
resources haven’t been fully utilized: we call it the underload
case if when COCA is applied, for all ¢t we have U(t,00) <
1-q/Q°

Note that since the resource provider always has a very
large resource capacity @, 1 —g/Q will be very close to 1,
accordingly the underload case defined above is very likely
to happen if there are not so many bidders with high unit
valuation asking for a same time period. The following
theorem shows that for Type I bidders, we can achieve a
competitive ratio comparable to that of Type II bidders in
such underload case.

Theorem 6. For any request sequence t consisting of Type I bid-
ders, we have Ecoca(t) > Eveg(t)/(1 + g1) in the underload

case, where g1 = maz(,c(p-1(y) 1 (Pmin(l, +q/Q))/ [y
P(u)du).

Observe that g; is quite similar to g». Then according to
Theorem 6, in the following corollary we show that auxil-
iary function P;(z) can also be applied to achieve a good
competitive ratio for Type I bidders in the underload case.

Corollary 2. For any request sequence t consisting of Type I bid-
ders, with auxiliary pricing function Pi(x), COCA is
(1 + e - r)-competitive in the underload case if § < Q/r, where
r=1+In(p/p).

8. Note that in Section 2.2 we make the assumption that y,(¢) is
within the range [0, q].
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4.1.3 Competitive Analysis for Type Ill Bidders

In the following analysis for Type III bidders, we show the
relation between the competitive ratio and the choice of
P(z) in both the general case and the underload case.

Theorem 7. For any request sequence t consisting of Type III bid-
ders, Ecoca(t) > Evea(t)/(14 g1) holds in the underload
case. And for the general case, we have Ecoca(t) > Evea(t)/

(1+ g1 + gs), where g = 1-5/1- [V P(u)du.

Theorem 7 indicates that the competitive ratio has a more
complex form in the general case, where both g; and g3 have
to be considered in order to achieve a good competitive
ratio. The following corollary shows that we can obtain a
non-trivial competitive ratio for both the underload case
and the general case, by using auxiliary function P;(z) and
Ps(x) respectively.

Corollary 3. For any request sequence t consisting of bidders of
Request Type IlI, with auxiliary pricing function P (z),
COCA is (14 e-ry)-competitive in the underload case if
q < Q/r1, where ry = 1+ In(p/p). And for the general case,
with auxiliary pricing function

D 1/1)/e05(47/Q) =)t | /o < 2 < 1
p?,(x)_{“’ /by el

P 0<z<1/r;.

COCA is (14 2e- r3)-competitive if § < Q/rs, where r3 =
(1+n(@-1/p-1)/(05- (1+7/Q)).

4.2 Competitive Analysis for the Mixture Arrival
Case

In Section 4.1 we assume users in a request sequence to be of

a single type. Since we have three request types, what competi-

tive ratio can we achieve if bidders of different types come in a

mixed manner? To answer this question, we conduct compet-

itive analysis for the mixture arrival case as follows.

Theorem 8. For any request sequence t consisting of bidders of
Type I, II, and 1II, ECOCA(T) > Evcg(‘lf)/(?) +2-q +gg)
holds in the underload case.

Theorem 8 tells us how the competitive ratio in the mixture
case is determined by the competitive ratio under the sce-
nario where only a single bidder type is considered. Finally,
according to Theorem 5 to Theorem 8, a non-trivial bound on
competitive ratio is given in the following proposition.

Corollary 4. For any request sequence t consisting of bidders of
Request Type 1, 1I and 1lI, with auxiliary pricing function
Pi(z), COCA is O(log(p/p))-competitive in the underload

case as long as G < Q/In(p/p).

Tightness of the achieved competitive ratio. It is worth men-
tioning that all the three request types can be reduced to a
simple case in [17],” where the competitive ratio on social
welfare is proven to be bounded by O(log(p/p)) for any
truthful online auction. This result indicates the tightness of

9. More specifically, Type II and III can be reduced into the “one
divisible good” case, and Type I can be reduced into the “k indivisible
goods” case.
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the achieved competitive ratio in an asymptotic sense, and it
also applies to the mixed arrival case.

5 DiscussioNs ON OTHER DESIRED PROPERTIES

In this section we discuss about some other important fac-
tors concerned in online auction design. And we show
that COCA performs well when these factors are taken
into consideration.

5.1 Computational Complexity

Note that COCA presented in Algorithm 1 only depends on
current information, and it is without any backward itera-
tion. Recall that in the above analysis we consider a continu-
ous time period from 0 to oo for simplicity. However in
practice, a very loose restriction on the current available time
period [0,77] (e.g., one day or one week from now), and a
very small time granularity s (e.g., one second or one minute)
are utilized. In this case COCA can be quite computationally
efficient: Since P(z) is nondecreasing, numeral solutionis of
all the optimization problems in the allocation rule can be
efficiently obtained. More intuitively, if we consider discrete
resource with capacity |()|, COCA achieves a computational
complexity of O(|Q||L|*log(|Q|)) where |L| = T/s.

Here we prove this conclusion for Type III users, and the
proof for Type I and Type II users can be done in a similar
way: Remind that type III users require time-invariant allo-
cation capacity with a fixed length /;. As a consequence, the
allocation y; for any type III users must be rectangular
shaped (like the allocation A in Fig. 3), and thus can be char-
acterized by ¢, (the starting time of allocation) and inv_cap;
(the bandwidth it receives). Then to find the exact allocation
for any type III users, we first substitute y; by ¢, and

inv_cap; in the payment function of COCA (step 1). Recall
that we have v;(y;) = b;(inv_cap;) - l;, where inv_cap; = y;(t)

forallt € [t, .t ] accordingly we have

P(x) - Qdxdt.
(12)

Ly +li (Ulttsu, )-Hrw_(up,/Q
ft* fU(Tf

sub

pi (va capn Vi bub

Then replace y; by ¢, and inv_cap; in Eq. (8) we get
< inv_cap;,t,” >= argmaxdm,_wpi%>(bi (inv_cap;) - l;—

P(z) - Qdxdt)
s.t. Vt e [t;j,tw + 1], UL, tsw,) + inv_cap; /Q < 1.

ot Hi ttwb +inv_ (ap,/Q
jf7 fU t,t

sub

(13)

Note that b;(inv_cap;) is concave and non-decreasing, and
P(z) is convex and non-deceasing. Thus for any fixed ¢, it
takes at most O(log(|Q|)) iterations to find the optimal
inv_cap; by bisection method [2] in Eq. (13), and each itera-
tion takes O(|Q||L|) operations. Repeating this procedure
for all possible choices of t;, results in a total complexity of

O(|QIILPlog(1Q1)).

5.2 Retry, Re-Sell and Collusion

Truthful mechanisms always make certain assumptions on
the requests submitted, e.g., it is widely assumed that each
request comes from an independent agent who offers one

and only one bid to the auction [6], and collusion is usually
not considered. Whereas such assumptions are not realistic
in the cloud resource allocation problem. Retry, re-sell and
collusion are commonly concerned factors that may prevent
theoretically truthful mechanisms from being applied in
real markets. In the following context, We briefly discuss
about these factors and then show the performance of
COCA when these factors are taken into consideration.

Retry. If the payment for a certain allocation fluctuates
over time, it might be beneficial for a bidder to submit an
untruthful request r; and try it for many times. However,
remind that the auxiliary pricing function is monotonically
increasing, so the payment for a certain allocation will never
decrease as t,, increases when COCA is applied. As such,
according to the allocation rule, it can be derived that a
repeated request with the same bidding parameters (except
for a later t,,,) will never result in a better utility gain.
Therefore, COCA is resilient against retries.

Re-sell. Re-sellers refer to bidders who buy in resources at
a low price and sell them out when the price goes higher, As
an ubiquitous market phenomenon, such re-selling behav-
iors are regulated, rather than prohibited when COCA is
applied. More specifically, it is reasonable to consider a re-
seller’s valuation on the resources as the estimated price at
which the resources can later be sold out. Then according to
Theorem 3, it is easy to reach to the conclusion that: If
COCA is applied, re-sellers will also maximize their utility by
truthfully revealing their valuation on the resource.Accordingly,
the re-selling behaviors can also be well regulated.

Collusion. Collusion refers to a group of bidders who
agree to cheat on their valuations to get some extra utility
gain [16]. Lots of works have focused on this problem [10],
whereas in truthful auction design, such a problem has
always been ignored. Strictly speaking, COCA is not collu-
sion-proof—after bidders exchanging their information, the
overall utility gain may increase as they may negotiate and
reach to a new bidding sequence where the overall utility
gain can be optimized. However, note that COCA introdu-
ces a predetermined auxiliary pricing function P(x), and it
can be derived from Algorithm 1 that the payment for any
certain allocation y; is uniquely determined if the arrival
time ty,, is fixed. Such design ensures that no collusion can
decrease the total payment for a certain allocation. Further, it can
be clearly verified that such utility gain (due to information
exchange among bidders) is essentially achieved by avoid-
ing (minimizing) the conflict among users, rather than
reducing the overall payment.

6 SIMULATION RESULTS

In this section we propose simple simulations to evaluate
COCA under illustrative bid distributions and arrival mod-
els. We focus on examining the allocation performance of
COCA on social welfare compared with the off-line VCG
mechanism. We haven’t compared COCA with existing
online auction mechanisms because no prior solutions have
achieved the generalized truthfulness in our online cloud
auction setting.

We consider a cloud resource provider of a fixed
capacity @ = 10! (i.e., the provider is able to host up to
10* VMs simultaneously), and here a simple simulation
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TABLE 1
Implementation Configuration

tsub; a; d; q B
[1,500] | [esub,, min(tsus, + 100,500)] | [a;,500] | 100 | p/p
Type li size; bl()
1 - [103,107] b_total; = p; - size;; p; € [1, ]
I - - b;(total_rsc;) = p; - total_rsc;
11 [5,200] - b; (inv_cap;) = p; - tnv_cap; - l;

model is used: the bidding parameters are assumed to be
uniformly distributed (detailed settings refer to Table 1),
and the (marginal) unit valuation is a fixed number
p € [1, 8], where B = p/p, which refers to the ratio between
the highest and lowest unit valuation (mentioned in the
assumptions in Section 2). Moreover, we assume a penalty
rate of oo for Type I bidders.

In our simulation, we create dynamic arrival scenarios
for all three valuation types separately, as well as the mixed
arrival case where each type contributes to around one third
of the population. Each scenario is simulated for 3,000 runs,
and each run lasts for 500 time units. In particular, the num-
ber of requests generated under each scenario is uniformly
distributed from 100 to 2,000, and the request arrival time
also follows a uniform distribution. We apply both COCA
and VCG in all the four scenarios and compare the achieved
social welfare.

Fig. 7 shows the allocation performance of COCA on
social welfare compared with the optimal solution (VCG
mechanism) in both worst case and average case. As is dis-
cussed in Section 4, we use auxiliary pricing function P, (x)
for Type I and Type II users. It can be observed in Figs. 7a
and 7b that the worst performance in 3,000 runs is always
better than the performance lower bound (1 over the com-
petitive ratio) calculated in Section IV-C, and the average
performance is always over 50 percent compared with the
optimal allocation. In Fig. 7c, we show the allocation perfor-
mance for Type III users when P; and P; are used respec-
tively. It can be observed that P, outperforms P; in both
average performance and worst performance. Briefly speak-
ing, the reason is that there exist some extreme “bad” cases
for Request Type III when we analyze the performance
lower bound shown in Fig. 7c. To achieve a better lower
bound, P; has to be constructed in such a way where the
allocation performance in most cases becomes less satisfac-
tory. However the possibility that the extreme case appears
is too small, so it hardly happens in 3,000 runs under our
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simulation model. In Fig. 7d, we plot the performance of
COCA for the mixture arrival case with auxiliary pricing
function P;(x). It is observed that the performance is very
similar to the single-arrival case shown above.

Overall, from the simulation results we can conclude that:
first, it is clearly observed that the ratios of COCA over VCG
in terms of social welfare are quite close to 1 in all cases, indi-
cating that COCA is comparable to the off-line VCG mecha-
nism (i.e., the optimal solution) under our simulation model;
second, with B = p/p increases exponentially, the worst per-
formance of COCA (in 3,000 runs) decreases very slowly in
all cases. Such results are in good agreement with the theo-
retical analysis in Section 4, that COCA achieves a competi-
tive ratio of O(log(p/p)) rather than O(p/p).

7 CONCLUSION

This paper conducts the first work on truthful online auction
design in cloud computing where users with heterogeneous
demands could come and leave on the fly. First, for cloud
consumers with heterogeneous demands we propose a novel
bidding language, by which user-specific demands can be
revealed in a concise and regulated request form. Second we
propose the first truthful online cloud auction mechanism,
COCA, which is based on a payment rule and an allocation
rule which serve as the necessary and sufficient conditions
for ensuring truthfulness. We also implement competitive
analysis on COCA in terms of social welfare, which shows
that the worst-case performance of COCA can be well-
bounded. Then our further discussion shows that COCA
performs well when some other important factors in online
auction design are taken into consideration. Finally, in simu-
lations the performance of COCA is seen to be comparable to
the well-known off-line VCG mechanism.
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