
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

NetHint: White-Box Networking
for Multi-Tenant Data Centers

Jingrong Chen, Duke University; Hong Zhang, University of California, Berkeley;
Wei Zhang, Duke University; Liang Luo, University of Washington;

Jeffrey Chase, Duke University; Ion Stoica, University of California, Berkeley;
Danyang Zhuo, Duke University

 https://www.usenix.org/conference/nsdi22/presentation/chen-jingrong

NetHint: White-Box Networking for Multi-Tenant Data Centers

Jingrong Chen Hong Zhang† Wei Zhang Liang Luo# Jeffrey Chase Ion Stoica† Danyang Zhuo

Duke University †UC Berkeley #University of Washington

Abstract
A cloud provider today provides its network resources to
its tenants as a black box, such that cloud tenants have
little knowledge of the underlying network characteristics.
Meanwhile, data-intensive applications have increasingly
migrated to the cloud, and these applications have both the
ability and the incentive to adapt their data transfer schedules
based on the cloud network characteristics. We find that
the black-box networking abstraction and the adaptiveness
of data-intensive applications together create a mismatch,
leading to sub-optimal application performance.

This paper explores a white-box approach to resolving this
mismatch. We propose NetHint, an interactive mechanism
between a cloud tenant and a cloud provider to jointly enhance
application performance. With NetHint, the provider provides
a hint — an indirect indication of the underlying network
characteristics (e.g., link-layer network topologies for a
tenant’s virtual machines, number of co-locating tenants,
network bandwidth utilization), and the tenant’s applications
then adapt their transfer schedules accordingly. The NetHint
design provides abundant network information for cloud
tenants to compute their optimal transfer schedules, while
introducing little overhead for the cloud provider to collect and
expose this information. Evaluation results show that NetHint
improves the average performance of allreduce completion
time, broadcast completion time, and MapReduce shuffle
completion time by 2.7×, 1.5×, and 1.2×, respectively.

1 Introduction
Data-intensive applications (e.g., network functions, data
analytics, deep learning) have increasingly moved to the cloud
for resource elasticity, performance, security, and ease of
management. The performance of the cloud network is critical
for these applications’ performance. Cloud providers have thus
spent significant effort to optimize various aspects of cloud
networks, including network topology [34, 73, 76], congestion
control and network stack [3, 33, 42, 44, 69, 77, 92], load bal-
ancing [2,46,63,88], bandwidth guarantee [6,9,43,48,51,67],
debugging [7, 31], fault recovery [53], hardware [8, 27, 52, 58],
and virtualization [66].

Today, a cloud provider exposes the network to its tenants
as a black box: the cloud tenants have little visibility into their
expected network performance (e.g., a constant worst-case
bandwidth assurance) or the underlying network character-
istics including the link-layer network topology, number of
co-locating tenants, and instantaneous available bandwidth.

A

C

B

D

(a) Network characteristics (b) network-agnostic (c) topology-aware (d) network-aware

0.5

0.5

0.5

A

C

B

D

Link BW(1, bidirectional)

Traffic(0.25, upstream)

Rack 1 Rack 2

bottleneck

A

C

B

D
1

1 0.75

A

C

B

D

11 1

bottleneck optimal

Finish time:1/0.5=2 Finish time:1/0.75=4/3 Finish time:1/1=1

Possible broadcast trees (throughput)

Figure 1: Applications have the ability and the incentive to
adapt their transfer schedules based on network characteristics:
Consider broadcasting a unit-size data object from VM A to VM
B, C, and D. (a) shows the network characteristics, all links have
bidirectional bandwidth of 1. VM D has upstream background
traffic of 0.25. (b) to (d) show possible broadcast trees and their
corresponding broadcast finish time. The arrows represent traffic
flows and the numbers represent the throughput.

The black-box model has worked well for decades due to
its simplicity. However, with the emergence of popular data-
intensive applications (e.g., data analytics, distributed deep
learning, and distributed reinforcement learning) in the cloud,
we observe that such a black-box model is no longer efficient
(§2). The crux is that many of these emerging applications
have both the ability and the incentive to adapt their transfer
schedules based on the underlying network characteristics,
but it is difficult to do so with a black-box network.

Consider broadcast, an important communication primitive
in reinforcement learning and ensemble model serving.
Figure 1 shows an example that VM A broadcasts to VM B to
VM D. Figure 1b shows a possible broadcast tree constructed
under the black-box model. Without the underlying network
characteristics, the broadcast tree is network-agnostic, which
introduces link stress on the cross-rack link. Figure 1c shows
a broadcast tree based on the topology information (i.e.,
topology-aware), which improves the broadcast finish time
from 2 to 4

3 time units by minimizing the cross-rack traffic.
Figure 1d shows a broadcast tree based on both the topology
and bandwidth information (i.e., network-aware). It builds an
optimal broadcast tree that avoids the congested upstream link
on VM D, further improving the finish time to 1 time unit. The
performance gains increase for data center networks that have
larger oversubscription ratios or more skewed traffic.

The above example illustrates a fundamental mismatch
between the black-box nature of existing network abstractions
and the ability of a data-intensive application to adapt its traffic.
With the black-box model, the cloud tenant is unaware of the
network characteristics, and the cloud provider is unaware
of the application communication semantics and the transfer
schedule. This misses an opportunity for the cloud tenants and

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1327

the cloud provider to adapt the data flows to the underlying
network topology and conditions to enhance performance
and efficiency for these applications. The potential gains are
substantial: our benchmark experiment on AWS shows that
the allreduce latency for a deep learning experiment varies by
up to 2.8× across different allreduce transfer schedules. One
candidate approach is for applications to probe and profile the
network and then plan their data flows accordingly [5, 57]. A
second option is to report their possible transfer schedules to
the provider for the provider to choose. We observe that these
alternatives introduce substantial communication latency and
system overhead (§2.2).

In this paper, we explore a white-box approach to resolve
this mismatch. One possibility would be for the cloud provider
to expose the physical network topology, the VM locations,
along with bandwidth assurances to the application. However,
this approach has two major drawbacks. First, exposing VM
placement and data center network topology may compromise
security for cloud tenants and can raise concerns for the cloud
provider (§2). Second, the bandwidth available to a tenant
depends on the communication patterns of other tenants,
which may be highly dynamic. Predictions that are not timely
or not accurate may do more harm than good.

This paper explores an alternative approach. We design and
implement NetHint, a mechanism for a cloud tenant and cloud
provider to interact to enhance the application performance
jointly. The key idea is that the provider provides a hint —
an indirect indication of the bandwidth allocation to a cloud
tenant (e.g., a virtual link-layer network topology, number
of co-locating tenants, network bandwidth utilization). The
tenant applications then adapt their transfer schedules based
on the hints, which may change over time. NetHint balances
confidentiality and expressiveness: on one hand, the hint
avoids exposing the physical network topology or traffic
characteristics of other tenants (§9). On the other hand, we
show that the hint provides sufficient network information to
enable tenants to plan efficient transfer schedules. (§5).

The effectiveness of NetHint relies on addressing three
important challenges. First, what information should the
hint contain? We provide each cloud tenant with a virtual
link-layer network topology along with available bandwidth
on each link in the virtual topology. This allows applications
to adapt their transfer schedules to avoid network congestion.

The second challenge is how to provide this hint at a low
cost. We design a two-layer aggregation method to collect
network statistics on the hosts. We designate a NetHint server
in a rack to aggregate network characteristics in the rack.
NetHint servers then use all-to-all communication to exchange
network characteristics globally. A cloud tenant can thus
query its rack-local NetHint server for hints.

The final challenge is how should applications react
to the hint. We present several use cases for NetHint to
optimize communication in a range of popular data-intensive
applications including deep learning, MapReduce, and

Figure 2: Examples to illustrate the black-box networking
abstraction: tenants cannot predict their network performance.
VM A to D are placed in two servers. All links have 10 Gbps
bandwidth. We assume bandwidth is statically partitioned on the end
host (each VM can get at most 5 Gbps).

serving ensemble models. The takeaway is that for all these
applications, tenants can use the NetHint information via
simple scheduling algorithms. Adaptation also has a downside:
hints can be stale and adapting transfer schedules based on
stale information can hurt performance. We design a policy for
applications to adapts flexibly with different hints in different
scenarios: applications use temporal bandwidth information
when background network conditions are stable and adaptation
overhead is low, and otherwise applications fall back to using
only the time-invariant topology information (§6).

We evaluate the overheads and the potential performance
gain of having NetHint in data centers using a small testbed
and large-scale simulations. Our results show that NetHint
speeds up the average performance of allreduce completion
time in distributed data-parallel deep learning, broadcast
completion time in ensemble model serving, and MapReduce
shuffle completion time in distributed data analytics by 2.7×,
1.5×, and 1.2×, respectively. Moreover, these benefits are
cheap to obtain: NetHint incurs modest CPU, memory, and
network bandwidth overheads.

In summary, this paper makes the following contributions:
• We identify a mismatch between the current black-box

network abstraction and the communication needs of
data-intensive applications.

• We explore a white-box networking approach for
multi-tenant data centers.

• We design and implement NetHint, a low-cost system to
allow data-intensive applications to adapt their data transfer
schedules to enhance performance.

2 Background

2.1 Black-Box Networking Abstraction

Today, the networking abstraction a cloud has is merely a
per-VM bandwidth allocation at the end hosts. The abstraction
is a black box: tenants are unaware of the underlying network
characteristics including network topology, number of
co-locating tenants, and instantaneous available bandwidth.
As a result, the cloud tenants cannot predict their network
performance. Figure 2 shows an example. Even with a static
allocation of 5 Gbps per VM, VM A cannot predict its network
performance because it depends on the traffic demand of other
VMs. VM A can get only a bandwidth of 3.33 Gbps when

1328 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0:00 4:00 8:00 12:00
Time of Day

0.0

0.5

1.0

La
te

nc
y

(s
)

(a) Allreduce latency across time

0.4 0.6 0.8 1.0 1.2
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

2.8x

1.8x

(b) CDF
Figure 3: Empirical allreduce (256MB) latency of 5 trials. Two trials
may have different VM allocations spatially, and each trial contains
100 consecutive runs. (a) shows 5 trials over different times of a day.
In (b), each line is the latency CDF of a trial. Each vertical line is the
mean latency for a trial. Allreduce latencies vary both across time
(up to 2.8x) and across VM allocations (up to 1.8x).

two flows of VM C and D cause congestion inside the network
(case 2). Even with work-conserving bandwidth guarantees,
a VM’s network performance depends on other VMs.

To quantify this effect, we benchmark allreduce latency on
Amazon Web Service (AWS). Allreduce is a collective com-
munication primitive that is commonly used for distributed
deep learning. It aggregates a vector (i.e., gradient updates
in deep learning) across all worker processes (each running
in its own VM). In our experiment, we launch 32 g4dn.2XL
(with Linux kernel 5.3) instances in the EC2 US-East-1 region
and test ring-allreduce latency with NVIDIA NCCL (version
2.4.8)—the most popular collective communication library for
deep learning—for 100 consecutive runs. We repeat the above
experiment for 5 trials, and different trials may have different
VM placements on the physical topology. Figure 3 shows
our findings: ring-allreduce performance on 256MB buffer
varies both spatially across different trials and temporally
within a trial. Comparing across different trials, the fastest
trial has a 1.8× better mean performance than the slowest trial;
comparing the 100 runs within a trial, the fastest run is up to
2.8× faster than the slowest run.

2.2 Adaptiveness in Data-Intensive Applications

Besides reinforcement learning and ensemble model serving,
which can broadcast model and input data adaptively, as
illustrated in Figure 1, we show that many other applications
also have both the ability and incentive to adapt their transfer
schedules based on the underlying network characteristics.

Many distributed data analytics workloads contain network-
intensive shuffle phases between different job stages. For ex-
ample, the shuffle in MapReduce applications creates an all to
all data transfer between the map and reduce stages. The shuf-
fle phase accounts for a large portion of the execution time for
many data analytics workloads [16], and numerous studies [4,
15,16,39,84,87,90] have demonstrated that optimizing shuffle
performance significantly improves application performance.
Given network characteristics, distributed data analytics appli-
cations can change their transfer schedules (by changing the
task placement) to minimize shuffle completion time. Figure 4a

bottleneckbottleneck

m1 m2 A

C

B

D

A

C

B

D

A

C

B

D
r1 r2

Mapreduce shuffle

11 11

Finish time: 4/1=4 Finish time: 2/0.75=2.67 Finish time: 2/1=2

Possible task placement

(b) network-agnostic (c) topology-aware (d) network-aware(a) Traffic demand

Figure 4: MapReduce jobs can adapt transfer schedules via task
placement. Assume the same network characteristics as in Figure 1a.
(a) shows the traffic demand for a MapReduce shuffle. Each arrow
represents a unit traffic. (b) to (d) show possible task placement and
the corresponding shuffle finish time.

shows the shuffle traffic for a MapReduce job with two mappers
(m1 and m2) and two reducers (r1 and r2). We observe from Fig-
ure 4b to Figure 4d that allocating mappers and reducers based
on the topology and bandwidth information effectively im-
proves this shuffle completion time from 4 to 2 units. Moreover,
emerging task-based distributed systems (e.g., Ray, Dask, Hy-
dro) support applications with dynamic task graphs. Similar to
the MapReduce example, we can change the transfer schedule
of these applications by choosing different VMs to place a task.

Moreover, many deep learning jobs are network-
intensive. This claim is validated by numerous recent
studies [14, 35, 40, 71, 86] and observations from production
clusters (e.g., Microsoft [30, 41, 82] and ByteDance [65]). In
particular, as mentioned in §2.1, deep learning jobs contain
an allreduce phase to synchronize gradient updates among
workers in each training iteration. As shown in Figure 5, an
allreduce phase has multiple candidate topologies. For exam-
ple, the allreduce traffic can be sent via a ring connecting all
the workers with a flexible ordering (Figure 5a and Figure 5b).
Or, we can build an allreduce tree to (1) aggregate gradient
updates to one of the workers, and (2) send the aggregated
gradient updates back in the reverse direction (Figure 5c and
Figure 5d). Different allreduce topologies introduce different
transfer schedules. Thus, given network characteristics, deep
learning jobs can change their transfer schedules by selecting
the algorithm and configuration of allreduce.

2.3 Addressing the Mismatch

The black-box nature of the existing networking abstraction
and the adaptiveness of data-intensive applications create
a mismatch. Data-intensive applications would benefit
from more network information from the cloud provider to
configure their transfer schedules, but black-box networking
hides this information.

Solutions based on the black-box abstraction. There are
two approaches to address this mismatch without modifying
the existing black-box networking abstraction. One possible
approach is to let the cloud provider optimize the communica-
tion for tenants as a cloud service. To this end, we first have to
develop a general networking API for cloud tenants to express
their communication semantics, traffic loads and optimization
objectives to the cloud provider. The API design should be
similar to the coflow abstraction [16] or the virtual cluster ab-

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1329

A

C

B

D

(a) allredcue ring 1 (b) allredcue ring 2 (c) allreduce tree 1

A

C

B

D

A

C

B

D

(d) allreduce tree 2

A

C

B

D

Possible allreduce topologies

Figure 5: Allreduce can be performed with different topologies.
(a) to (d) show 4 possible allreduce topologies to perform allreduce
among the 4 VMs (workers).

straction [9], but more general to support a large variety of pos-
sible traffic patterns and user-defined objectives. Moreover, a
recent measurement study [78] shows that major public clouds
exhibit high bandwidth variability at a time granularity of sec-
onds. Thus it is hard, if not impossible, for the cloud provider
to perform timely network scheduling for thousands of tenants
in a centralized manner, while ensuring network SLAs (e.g.,
defined via the networking API) for each tenant respectively.

Another potential approach is for cloud tenants to run exten-
sive performance profiling in their allocated VMs [29, 49, 57].
For example, PLink [57] probes the VM pair-wise bandwidth
and latency with DPDK and uses K-means clustering to
reverse engineer the underlying network topology. This allows
it to achieve high allreduce performance by choosing a good
allreduce algorithm. Choreo [49] uses 3-step measurements
to pinpoint congested links in the data center network to
schedule data analytics workloads. Similar approaches were
explored decades ago on Internet traffic routing on wide-area
overlay networks [5]: picking a high-performance Internet
path based on user measurement. Unfortunately, this approach
is both costly, as each tenant/user has to profile the network
independently, and slow, because the probing phase delays
the start of the application. The PLink authors told us that they
use 10000 packets to determinte bandwidth between a pair
of hosts. Choreo generates 3 minutes of probe traffic to infer
the network characteristics for 10 VMs.

A white-box network abstraction? Given the deficiencies
of the two black-box based approaches, we instead explore a
white-box approach: the provider reveals essential information
about the network characteristics to the tenant, and the tenants
then optimize their transfer schedules accordingly.

One possible way to achieve this objective is for the cloud
provider to reveal to a tenant the location of each VM in the
physical link-layer network topology, and estimate available
bandwidth between each of the VM-pairs. However, this
method can raise security and competitive issues. First,
exposing VM allocations in the physical network introduces
privacy risks for cloud tenants. For example, a malicious
user can locate a targeted tenant’s VMs and perform attacks.
Second, the exposed VM allocation information can raise
competitive concerns for the cloud provider. For instance, this
information might be valuable for competitors to learn a cloud
provider’s scheduling policies, thus, lowering its competitive
advantage. Third, the bandwidth a tenant can acquire depends
on the transfer schedules of all the tenants, and a single change
in transfer schedule of one tenant may trigger a recalculation

NetHint Service

Cloud Provider

Network
Characteristics Change

Cloud Tenant

Application
Hint

1Collect

Query2

Adapt3
Transfer

Schedule

Figure 6: NetHint overview. NetHint service collects network
characteristics. Cloud tenants poll hints from NetHint service and
adapt their transfer schedules.

for all the tenants. As such, it is computationally expensive
for the cloud provider to update the bandwidth shares in real
time. Moreover, an application’s bandwidth also depends on
its own transfer schedule. For example, in Case 2 of Figure 2,
if VM A sends one extra flow, the total egress bandwidth of
VM A increases to 5 Gbps1. As a result, without knowing a
tenant’s transfer schedule, the cloud provider cannot provide
accurate bandwidth estimates to its tenants.

3 NetHint Overview
NetHint is an interactive mechanism between a cloud tenant
and a cloud provider to jointly enhance the application
performance. The key idea is that the provider provides a hint
— an indirect indication of the underlying network character-
istics (e.g., a virtual link-layer topology for a tenant’s VMs,
number of co-located tenants, network bandwidth utilization)
to a cloud tenant. As illustrated in Figure 6, the provider
provides a NetHint service, which periodically (100 ms by
default) collects the hint information to capture changes of the
underlying network characteristics. A tenant application can
query the NetHint service to get the hint information, and then
adapt its transfer schedules based on this provided hint. Note
that NetHint does not change the fairness mechanism of the un-
derlying network. A tenant can opt in/out any time — whether
or not to use NetHint will not affect its fair share of the network.

The hint provides a white-box network abstraction which
includes additional network information to tenants. As such,
users can infer their best transfer schedule without substantial
probing latency or communication overhead with the provider.
The hint exposes neither the physical network topology nor
the location of a tenant’s VMs within it (e.g., which racks).
Compared with providing bandwidth information, the hint
relieves the provider from the burden of calculating accurate
bandwidth allocations. Moreover, compared with calculating
bandwidth allocation, it is easier to acquire accurate hint
messages (e.g., a virtual link-layer topology for a tenant’s
VMs, number of co-located tenants, network bandwidth
utilization). As such, the provider is free from the potential
risk of providing inaccurate information.

We require NetHint to be: (1) readily deployable: all
the mechanisms are implementable using commodity
hardware; (2) low cost: the cloud provider can collect network
characteristics with minimal CPU, memory, and bandwidth

1Assume per-flow fair sharing in the network.

1330 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

overheads; (3) useful: data-intensive workloads can leverage
the hints to achieve high performance. To achieve these goals,
NetHint’s design and implementation must address three
questions. First, what hints should be provided to the tenants?
Second, how should cloud providers collect the hints with low
cost? Third, how should applications use the hints to adapt
their transfer schedules?

NetHint describes a virtual link-layer topology that connects
a tenant’s VMs. In addition, NetHint provides to the tenant
recent utilization summaries and counts of co-locating tenant
connections on shared network links in the virtual topology.
This information allows the tenant to adapt its transfer
schedules based on both the topological and temporal hot
spots in the network. Further, our design ensures that the only
additional information NetHint exposes is aggregated network
statistics across all tenants. It is thus difficult for a tenant to
acquire information about any individual other tenant. (§4.1)

For the second question, our preferred approach to collect-
ing hints is to measure network traffic in the physical switches
using network telemetry, e.g., sketching [54, 55]. However,
sketches depend on specific programmable switch features,
which are not widely deployed. Instead, our prototype employs
a host-driven approach, in which each machine monitors
local flows and transmits flow-level statistics to a NetHint
measurement plane. One machine in each rack runs a NetHint
server process to aggregate the rack-level information. These
NetHint servers exchange information using periodic all-to-all
communication. A cloud tenant connects to the local NetHint
server to fetch hints. We show that this approach allows
NetHint to provide timely hints to tenants with low CPU and
bandwidth overheads (§4.2).

As for the third question, we consider two aspects of
adaptation in response to the hints. First, we observe that the
adaptation algorithm should take into account the application
transfer schedule and semantics to maximize the performance
gain. To this end, we consider several use cases for NetHint
which cover a range of popular data-intensive applications,
including (1) choosing allreduce algorithms in distributed deep
learning, (2) constructing broadcast trees for serving ensemble
models, and (3) placing tasks in MapReduce frameworks. For
each case, we show how applications can adapt their transfer
schedules based on the information in the hint. The takeaway
is that for all of these examples, tenants can make use of the
NetHint information via simple scheduling algorithms (§5).

Second, we explore the drawbacks of adaptation: it intro-
duces extra computational overhead, and may be ineffective
or even harmful or unstable if network conditions change too
rapidly. We conclude that the adaptation algorithm should
use different sets of hints depending on network changing
frequency and adaptation overhead. For example, we find that
if an application has a non-negligible latency to collect hints
and compute the transfer schedules, the bandwidth information
may be stale and thus may negatively affect the application per-
formance (detailed in §6). Based on this intuition, we design

Notations & Descriptions
T A virtual topology connecting all the tenant’s VMs
l A virtual link in virtual topology T

Bl
e A tenant’s bandwidth share on link l

Bl
t Total bandwidth on link l

Bl
r Residual bandwidth on link l

nl Number of shared objects on link l

Table 1: Notations and descriptions for NetHint.

a policy for applications to react to hints in a flexible manner:
under stable network conditions and low adaptation overheads,
applications use both bandwidth and topology information
to maximize the performance gain of adaptation. Otherwise,
applications use only the stable topology information (§6).

4 Providing NetHint Service
4.1 What Is in the Hint?

NetHint exposes a virtual link-layer topology T to a cloud
tenant. The tenant’s virtual topology abstracts the network as a
tree data structure in which the tenant’s VMs are leaf nodes. A
link in the tree represents one or more physical links in the data
center network, and an interior node may abstract a region of
switches and links. The prototype uses a three-layer tree that
captures how VMs are distributed among racks in a data center
and collapses the network structure above the rack level into
a single root node. VMs residing in the same rack are in the
same subtree. The virtual topology abstraction does not reveal
racks or servers where the tenant has no presence. Following
the common observation that congestion losses often occur at
the rack level [12, 43, 60, 89], these virtual topologies in the
NetHint prototype ignores congestion at any structure above
the rack level [23]. It is possible to represent more structure by
adding layers to the tree. The tree approximation presumes that
the data center network is able to balance its load, so that traffic
among children of an abstract node see similar available band-
width. There is a rich literature on efficient network load balanc-
ing for data centers [2,21,22,26,28,36,46,47,63,88], and some
of them are readily deployable with commodity hardware.

NetHint allows applications to react to temporal hot spots
in the network. For this purpose, NetHint exposes an estimate
of utilization on each virtual link l. Recall Case 1 in Figure 2,
now assume the orange flow from VM A uses only 2 out of
10 Gbps. If the tenant of VM B knows the network utilization
information, it can infer that VM B can send traffic at 8 Gbps.
As such, NetHint provides (1) the total bandwidth Bl

t and (2)
the residual bandwidth Bl

r on each virtual link l. However,
we find that this information alone is insufficient for an
application to adapt its transfer schedule, especially when
links are congested. For example, even if one link l has already
reached 100% utilization, a tenant can still send flows through
l and get a fair bandwidth share.

Shared objects and fairness models. In fact, the bandwidth
share depends on the fairness model implemented by the
cloud provider. Per-flow-fairness and per-VM-pair-fairness

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1331

are enforced naturally for RDMA-based networks because
modern RDMA NICs can be configured to choose either of
them. Per-flow-fairness is ensured for containerized clouds
because cloud users cannot modify the kernel TCP stack. For
traditional TCP-based and VM-based clouds, many recent
studies [18, 37, 62] describe how to enforce per-VM-pair-
fairness. With the increasing programmability of modern
switches, it now becomes possible to implement other fairness
models in the network [74, 83], such as per-tenant fairness.

Consider an application placing 3 connections on a
100 Gbps network link with 7 existing connections from
3 other tenants. We assume each flow can reach 100 Gbps
throughput. With per-flow fairness model, the application
should get 30 Gbps bandwidth. With per-tenant fairness model,
the application should get 25 Gbps bandwidth.

The example indicates that the bandwidth share also
depends on the number of shared objects on each link l. The
definition of shared object depends on the fairness model:
it is a flow (VM-pair, tenant) under per-flow (per-VM-pair,
per-tenant) fairness, respectively.

To provide bandwidth information, NetHint exposes the
number of shared objects nl on each link l. Taken together,
NetHint provides a tuple (nl , Bl

t , Bl
r), which includes both the

current link utilization and the number of shared objects.

Bandwidth estimation. The information in the virtual
topology enables a tenant to estimate its available bandwidth
on each virtual link l efficiently. More formally, consider a
tenant who plans to place kl shared objects on link l in its
transfer schedule. If link l is an in-network link in virtual
topology T (i.e., not attached to any VM), the bandwidth
share the tenant gets can be estimated as:

Bl
e=max(

kl

nl+kl Bl
t ,B

l
r) (1)

Equation 1 indicates that when the link is under-utilized,
the tenant can use up all the residual bandwidth Bl

r, and even
if the link is already congested, the tenant can at least achieve
its fair share based on the number of shared objects.

If link l is an edge link (i.e., attached to one VM), the
bandwidth share is also affected by the underlying sharing
approach. More specifically, denote the per-VM bandwidth
guarantee provided by the sharing approaches as Bv, we have:

Bl
e=

{
min(Bv,max(kl

nl+kl Bl
t ,B

l
r)) static partitioning

max(kl

nl+kl Bl
t ,B

l
r,Bv) work-conserving

(2)

Sources and impact of inaccuracy We acknowledge that
both Equation 1 and Equation 2 are approximations and can
sometimes be inaccurate. First, some shared objects (i.e.,
tenant, VM-pair, or connection) may have traffic demands less
than their fair network share, thus calculating the exact value
of Bl

e requires knowing the traffic demand for each shared
object. NetHint does not provide per-object information, as
doing so introduces security concerns and significant overhead
given the huge number of such objects. Second, since a virtual

link corresponds to the aggregation of multiple parallel paths
in the physical topology, the estimation may be inaccurate
under poor network load balancing across these parallel
paths. We note that this is less likely to happen with recently
proposed data center network load balancing designs.

Despite these inaccuracies in bandwidth estimation, our
results (§8) show that even the three-level tree approximation
is sufficient to adapt the transfer schedules and improve the
performance of our target applications. Moreover, evaluation
results also show that the benefits degrade gracefully with the
quality of the approximations.

Alleviating security and competitive issues. Compared
with a naive white-box solution that exposes VM allocation
information and physical network topology, NetHint has
alleviated the security and the competitive concerns. First,
NetHint does not expose the physical location of allocated
VMs, so a tenant cannot learn the provider’s VM allocation
policy. Second, our network statistics are aggregated over all
other tenants, so it is difficult for a tenant to infer from them
the network behavior of any other individual tenant. Finally,
network topology among a tenant’s VMs is already accessible
even in today’s black-box model via user probing approaches,
e.g., as presented in PLink [57] and Choreo [49]. NetHint does
provide easier access to this information, but we believe this
does not increase the security risks. Note that NetHint does
not fully eliminate these issues, and we discuss them in §9.

4.2 Timely NetHint with Low Cost

User query overhead The virtual topology is presented as
a set of links (each with a Link ID). Each virtual link has its
associated Bt . The temporal utilization information for each
link includes a tuple of three fields (Link ID, n, Br). Each field
occupies 8 bytes. As such, the amount of data returned by a
query is small. Consider a cloud tenant that has rented 100
VMs allocated across 10 racks. As upstream and downstream
virtual links are considered separately, the number of virtual
links equals twice the sum of the number of VMs and the
number of racks the tenant occupies. The amount of query
information thus has (100+10)×2×3×8=5280 Bytes.

There is no value or incentive for a tenant to query at
a higher frequency than the information update period of
NetHint (100 ms by default). Tenant VMs communicate with
a NetHint server through TCP connections with rate limits
that prevent queries more frequent than once per 50 ms.

Collection overhead We design a two-layer host-driven ag-
gregation approach to collect timely hint information with low
cost. Recall that we select one machine in each rack to run
a NetHint server process. Each machine collects flow-level
network characteristics from its operating system, and sends
them to its rack-local NetHint server periodically. The informa-
tion each machine has to send to the local NetHint server is a
virtual link ID plus one (n, Br) for each virtual machine to ToR
link and another (n, Br) containing only the traffic transmitting

1332 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

across the rack, for adding its contribution to the ToR uplink’s
(n, Br). Each field is 8 bytes, so the total data size per virtual
link is (1+2×2)×8=40 bytes. It is necessary to consider the
upstream and downstream bandwidth independently, so each
virtual machine or ToR has two associated virtual links. For
example, assuming a physical machine has 10 VMs, it sends
40×2×10=800 bytes of data to the NetHint server in each pe-
riod. We set the information update period to 100 ms by default.
Thus, the total aggregated information for one NetHint server is
two (n,Br) for every VM-to-ToR virtual link and the ToR uplink
in the virtual topology. The NetHint servers then use all-to-all
communication to exchange their aggregated information.

Suppose a data center has 1000 racks, and every rack has 20
machines. In each information update period, a local NetHint
server gathers 16 KB information (800 bytes × 20 machines).
With a 100 ms update period, the total amount of cross-rack
traffic introduced by the all-to-all information exchange is
16 MB/100 ms= 1.3 Gbps per rack. Let’s assume each rack
has outgoing bandwidth of 500 Gbps. Then the bandwidth
overhead of NetHint is 0.26%.

Failure detection and recovery NetHint is a best-effort
service, and applications should be prepared to function
without hints, e.g., if their rack-local NetHint servers become
unavailable due to failures such as link failure and server crash-
ing. In this case, applications just revert the transfer schedule
to a default one assuming no known network characteristics
until a new NetHint server is available in the rack.

5 Adapting Transfer Schedules with NetHint
We find that most data-intensive applications can be catego-
rized into two classes, based on how they can adapt to network
characteristics. For each application class, we show that
adapting transfer schedules corresponds to an optimization
problem. Our goal here is not to present the optimal algorithm
to solve the scheduling problems. Rather, our goal is to show
that a broad set of distributed applications can benefit from
NetHint using simple scheduling algorithms.

5.1 Optimizing Collective Communication

Many data-intensive applications run a high-level collective
communication primitive (e.g., broadcast, allreduce) among
a set of processes. Any such operation can be accomplished
flexibly via a large set of possible overlay topologies among
all the processes. For example, a broadcast can be performed
with different broadcast trees connecting all the receivers, and
an allreduce may employ different allreduce topologies (e.g.,
tree-allreduce or ring-allreduce). For all these communication
primitives, the choice of overlay topologies affects only the
efficiency (i.e., finish time) but not the correctness. Many
popular ML applications belong to this category:
• Data-parallel deep learning: each server holds a replica

of the model and calculates gradients locally. Servers use
allreduce to synchronize gradients in each training iteration.

• Reinforcement learning: the trainer process in reinforce-
ment learning repeatedly broadcasts the model (i.e., policy)
to a dynamic set of agents.

• Serving ensemble models: multiple servers run DNN
models simultaneously to predict the label on the same
input data, and then use voting to decide the final output.
For every input data batch, the front-end server broadcasts
it to a set of servers holding different DNNs.
Moreover, as the object of collective communication is usu-

ally a vector of numbers, we can partition the object and apply
different overlay topologies on each partition. For example,
a broadcast can be accomplished via multiple broadcast trees,
with each broadcast tree transferring a different (weighted)
portion of the broadcast object. Similarly, an allreduce can be
performed via a weighed combination of different allreduce
topologies. The transfer schedule thus depends on both the
choices of overlay topologies and their corresponding weights.

With NetHint, the tenant can estimate the bandwidth Bl
e

available on each link l based on Equation 1 and Equation 2.
For a transfer schedule s, denote the volume it transfers on
each link l as dl

s. The corresponding latency of the schedule
can be estimated as maxl(dl

s/Bl
e). Thus, we have:

Problem statement: Given the virtual topology T and the
estimated bandwidth on each virtual link l, find a transfer
schedule that minimizes the latency maxl(dl

s/Bl
e).

To solve the above problem, one major challenge is that
the number of candidate transfer schedules can be huge. For
example, there can be O(n(n−2)) possible broadcast trees to
broadcast a message to n processes [79]. One possible solution
is to use tree packing algorithms [13, 25, 79]. However, since
the goal here is to show the usefulness of NetHint information
rather than to find the optimal algorithm, we design simple
heuristics to solve the problem. We first sample a random set
of overlay topologies (broadcast and allreduce trees) which
cross each rack only once. We then use linear programming
to find the best weight assignment among these trees, so that
the transfer schedule minimizes the latency maxl(dl

s/Bl
e).

5.2 Optimizing Task Placement

Many distributed applications execute based on a task graph
describing the tasks and their dependencies. The task graph
can be static (i.e., task graph is known before the workload
runs) [19, 85] or dynamic (i.e, tasks arrive as the workload
runs) [61]. Since different tasks may send and receive different
amounts of data, the placement of tasks onto VMs determines
the transfer schedule among the VMs. Applications in data
analytics frameworks and task-based distributed systems
therefore can benefit from network-aware task placement:
• Data analytics frameworks [32, 85]: data analytics work-

loads contain network-intensive shuffle phases between
different job stages. One shuffle phase creates an all-to-all
communication between a set of sender tasks and receiver
tasks, so task placement controls the shuffle performance.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1333

Notations & Descriptions
Tb Average changing period of the background network condition
Tu Duration of a transfer schedule being used
Ta Latency to adapt (collecting information and computing a schedule)
Ts Staleness of the hint
p A threshold defined by the ratio between total adapting latency and JCT

Table 2: Important factors related to the impact of staleness.

• Task-based distributed systems [38, 61] are increasingly
popular in industry. In these applications, the task graph
is dynamic and generated at runtime. Tasks launch after
fetching input objects from upstream tasks. As such,
efficient task placement can minimize the task launch
latency reducing the object fetch time.

Problem formulation For both applications, we can
formulate the task placement as a classical network embedding
problem. Denote the set of tasks as T and the set of VMs as V.
Compared with the problem statement in §5.1, which selects
an efficient data transfer schedule, here we need to find an
embedding E :T 7→V given the transfer schedule among all
tasks. The algorithm inputs and optimization goals are the
same as the problem statement in §5.1, except that the latency
is calculated as maxl(dl

e/Bl
e). dl

e is the transfer volume on link
l introduced by embedding E .

We make minor modifications to the greedy heuristics
proposed in Hedera [1] to solve the embedding problem. We
first sort all tasks in T based on the amount of data they receive
in decreasing order (no need if |T| = 1). We then place tasks
one by one following this order. When placing a task to V, we
optimize greedily for the objectives described in the problem
statement. Before processing the next task, we update the
cross rack traffic and dl

e based on the placement.

6 Flexible Adaptation for Stale Information

Staleness of NetHint information The staleness of NetHint
information during job execution is affected by the following
two factors (notations listed in Table 2). First, an application
controller can have a non-negligible latency to collect hints
and compute the transfer schedules based on the hints, which
makes the hints stale when being applied. We denote the
adaptation latency as Ta.

Second, applications can adapt to hints periodically. For
each adaptation period, the schedule calculated based on the
previous hint will be used for the entire duration Tu. Note
that for recursive jobs (e.g., model serving), recomputing the
schedule for every iteration introduces too much latency. To
this end, we fetch hints and recompute the schedule every k
iterations, so that the latency to compute transfer schedule is
within a portion p (e.g., 10% by default) of the job execution
time. Moreover, for jobs that adapt the task placement based
on hints (e.g., MapReduce), the adaptation period Tu equals
job completion time, as the task placement usually cannot be
changed during job execution.

Taken together, the staleness of NetHint information is quan-
tified as Ts=Ta+Tu, which is the combination of both above

factors. Ta is the total latency of four steps. The first three
steps are to collect hints: sending host network characteristics
to NetHint service, NetHint service exchanges rack-level net-
work characteristics, and applications querying the NetHint
service. The maximum latency for these three steps combined
is 300 ms (100 ms per step due to NetHint frequency), so we
use 150 ms as the estimate for the average case latency. The last
step is to compute the transfer schedule, and it is application-
specific (Figure 8). In our evaluation, a deep learning job of 64
workers requires 10 ms to compute its transfer schedule. We
thus set Ta=150+10=160 ms. We set Tu=100 ms to keep the
compute overhead to be less than 10% of the total running time.

Impact of the stale information The impact of stale
information depends on the relative relationship between
(1) the staleness of the information; and (2) the stability of
the underlying network condition. Assume the background
network condition changes every Tb time in average. A hint
with staleness Ts much less than Tb can still be helpful since
the network condition is likely to be similar with the condition
Ts time ago. In contrast, a hint with staleness Ts much larger
than Tb will be misleading, since the current network condition
may be very different from the condition Ts time ago. In this
case, adaptation with misleading hints can negatively affect
the application performance (Figure 12d).

Flexible adaptation based on application and network con-
dition. There are two takeaways from the above analysis. First,
stale information should not be used when it is misleading.
Regarding this, one approach is to simply ignore the provided
hints and run applications as we run them today. However, as
we show in motivating examples (e.g., Figure 1c and Figure 4c),
the link-layer network topology alone can be useful for some
types of applications to reduce the amount of cross-rack traffic.
Compared with the bandwidth information, topology infor-
mation is more stable and not affected by network dynamics.

Therefore, we propose NetHint-TO, a class of scheduling
algorithms that use only the stable topology information from
NetHint. For example, with NetHint-TO, we create a ring that
crosses each rack only once for ring-allreduce and a chain that
crosses each rack only once for tree-broadcast.

The second takeaway is that there is no one-size-fits-all
solution. Each application should have two scheduling algo-
rithms, one uses bandwidth information (in §5) and another
one uses stable topology information only (NetHint-TO).
We design a policy to choose between these two algorithms
based on both the application and the network conditions
(i.e., Tb, Tu, Ta). More specifically, when Ts<Tb, applications
use the scheduling algorithm in §5 to calculate the optimal
schedule based on both bandwidth and topology information.
When Ts ≥ Tb, applications adopt NetHint-TO to minimize
the impact of stale information.

1334 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7 Implementation
We implement NetHint using 4600 lines of Rust code. 2300
additional lines of code are in NetHint server to provide
NetHint to cloud tenants. The algorithms for applications
to adapt transfer schedules (i.e., MapReduce, allreduce, and
broadcast) are implemented using 149, 216, and 144 lines of
code. We use lpsolve [56] for solving linear programs.

To compute the hints in our testbed, we take an endhost-
based approach. We hook an eBPF program into the OS
kernel. The eBPF program counts the total number of bytes
going within the rack and outside the rack. A userspace
program polls the counters from the eBPF program every
10 ms and maintains a moving average of the number of
existing shared objects (i.e., flows, in a per-flow fairness
model). The userspace program sends the number of shared
objects and traffic data to the NetHint server every 100 ms. In
a deployment environment where SmartNICs is available, we
can also program the SmartNICs to implement this logic.

NetHint server binds to a TCP port, where VMs connect
to to fetch hints. NetHint server uses a single thread to respond
to NetHint queries. A single thread is enough for our design
because queries are not frequent.

For an application to use NetHint, we need to modify the
application. For traditional collective communication, the
transfer schedule is static and decided before runtime. Recent
collective communication designs have shown that transfer
schedules can be dynamically decided at runtime [93]. NetHint
can help these dynamic collective communication designs
to decide on an efficient transfer schedule based on network
characteristics. These dynamic collective communication
designs can query and adapt transfer schedule every k iterations
before issuing data transfer operation. For task placement,
the global scheduler of a distributed system (e.g., master in
MapReduce [19]) queries the NetHint server and uses both the
task information and the NetHint information to decide task
placement. For our evaluation purpose, we build a dynamic
scheduler for collective communication and a task scheduler
for MapReduce tasks according to the descriptions above.

8 Evaluation
8.1 Setup and Workloads

We evaluate NetHint using an on-premise testbed and large-
scale simulations. Our setting is that hosts ensure work-
conserving bandwidth guarantee for VMs and the network
ensures per-flow fairness. We compare NetHint with the sce-
narios where cloud tenants (1) do not consider network charac-
teristics and (2) probe the network to reverse-engineer the net-
work characteristics and then adapt transfer schedules. For user
probing, we assume network information is always correctly
reverse engineered. We assume the probing strategy is the fol-
lowing: For a tenant that owns n hosts, user probing runs in n/2
rounds, where each round’s latency is either the latency to send
10000 packets or 1 second, whichever is smaller, to measure

throughput and latency between n/2 pairs of hosts. 2 Similar to
NetHint, user probing adopts the same strategy to periodically
update the transfer schedule, but with a lower frequency due
to its higher overheads. We calculate user probing’s frequency
using the same method described in the second paragraph of §6.

We use a mix of two types of background traffic to simulate
skewed and long-tailed traffic in data centers [3, 12, 70, 89].
One slow-moving background traffic occupies 0-50%
bandwidth of the link capacity on each link in a Zipfian
distribution. The slow-moving background traffic occupies
10% bandwidth in total and changes every 10 seconds. The
other is a fast-moving background traffic which is on all
links and occupies 0-10% bandwidth of the link capacity in a
uniform random fashion. The fast changing background traffic
changes every 10 ms. We use the following workloads. We
run each experiment 5 times and report the average speedup
for each job. To quantify the overall speedup, we also measure
the arithmetic average of speedups across jobs.

Distributed data-parallel deep learning. We test the
allreduce completion time. The job sizes are either 16 or 32
(in terms of number of nodes) with equal probability. For each
allreduce job, we set the buffer size to be 100 MB (≈ the size
of ResNet-50). We run 100 jobs and assume jobs arrive as a
Poisson process. We choose Poisson lambda = 24 seconds,
so that the average network utilization approximates to 12%.

Serving an ensemble of ML models. We test the broadcast
completion time. We use the same job size distribution de-
scribed in Hoplite [93]. We run 100 jobs and assume jobs arrive
as a Poisson process. We choose Poisson lambda =8 seconds,
so that the average network utilization approximates to 12%.

MapReduce. We test the latency of the data shuffling phase of
MapReduce. We use Facebook’s MapReduce trace [17], which
contains 500 MapReduce jobs and their arrival time. We as-
sume the traffic is divided evenly from a reducer to the mappers.

8.2 NetHint in Testbed Experiments

We build a 6-server testbed. Each server has a 100 Gbps
Mellanox ConnectX-5 NIC and two Intel 10-core Xeon Gold
5215 CPUs (2.5 GHz). These machines are connected via
an emulated 40 Gbps 2-stage FatTree network using a single
100 Gbps Mellanox SN2100 switch through self-wiring. 3
machines are in one rack, and the rest 3 machines are in the
other rack. The oversubscription ratio on our network is 3.
Each machine runs 4 VMs where each VM is guaranteed
10 Gbps through fair-queuing on the NICs.

Overheads. We already provide analysis of bandwidth
overheads in §4.2. Now the remaining question is how much
overhead NetHint incurs in terms of latency and CPU cycles.

2We believe this is a best-case scenario for existing user probing
techniques. Plink [57] sends 10000 packets per VM-pair to reverse engineer
link-layer topologies. Choreo [49] uses a 3-step strategy to pinpoint congested
links and its first step is measure pair-wise bandwidth. It takes 3 minutes to
reverse engineer the network conditions for 10 VMs (90 VM-pairs).

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1335

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (1.58x)
NetHint (2.17x)

(a) Distributed deep learning

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (0.90x)
NetHint (1.41x)

(b) Ensemble model serving

0.4 0.8 1.2 1.6 2.0 2.4 2.8
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (0.84x)
NetHint (1.16x)

(c) MapReduce
Figure 7: Testbed results: NetHint’s speedup on testbed for allreduce in data-parallel distributed training, broadcast in ensemble ML model
serving, and mapreduce shuffle compared with user probing and not using network information. Numbers in the legend shows the average
of speedups compared with running applications without network information.

2 4 8 16 32 64
Job Scale

10
−1

10
1

10
3

O
ve

rh
ea

d
(m

s)

Broadcast
Allreduce
MapReduce
User Probe

Figure 8: Testbed results: Latency to compute transfer schedules.

Collecting statistics from eBPF program is instant, and the
polling period for flow statistics is 10 ms.

To measure the overheads in large deployment, we use each
CPU core in our testbed to emulate a rack by instantiating
a NetHint server per-core. We use pidstat to measure the
CPU cycles and memory footprint on NetHint server. Table 3
shows the result. When the number of racks scale up to 240
racks, the CPU time spent on NetHint servers is negligible,
i.e., less than 0.66%. The memory footprint on each NetHint
server is small (less than 80 MB) and scales with the number
of racks mainly due to the increase in the hint size. The latency
to collect network information is less than 14 ms.

We implement the algorithms described in §5. We test the
computation latency of running each algorithm at different
scales (number of workers). Figure 8 presents the results. The
latency to make a scheduling decision remains low, ranging
from 10 us to 30 ms. Compared with the computation latency,
the extra latency introduced by user probing is much higher,
ranging from 100 ms to 3 seconds. The round-trip latency to
fetch hints takes 100 us because it is rack-local.

Results. NetHint improves application performance. Figure 7
shows the normalized speedup to running applications without
network information. Using user probing speeds up the commu-
nication by 1.6x for distributed data-parallel deep learning and
slows down the communication by 1.1x and 1.2x for serving an
ensemble of ML models, and MapReduce shuffle, respectively.
NetHint speeds up communication of these workloads by
2.2x, 1.4x, and 1.2x, substantially outperforming user probing.
NetHint can outperform user probing because collecting hints
is more lightweight than each application individually probing
the network characteristics. User probing hurts many ensemble
model serving and MapReduce jobs because of the probing
overheads. In addition, we notice that a small portion of jobs
in Figure 7c are penalized. On our testbed, the job log shows

Racks CPU Util. (%) Memory (MB) Latency (ms)
6 0.06 4.53 10.60

24 0.14 5.90 10.73
96 0.41 19.28 11.91
240 0.66 78.16 13.73

Table 3: Testbed results: The system overhead of a NetHint server
in CPU utilization, memory, and information collection latency.

that there are on average 2.8 jobs sharing the rack bandwidth.
One job arrival or departure changes the network condition
for all the other jobs on the rack. However, the task placement
decision cannot be changed during job execution, and thus the
initial placement can be imperfect. In contrast, deep learning
and model serving workloads in Figure 7 do not severely suffer
from this problem, as they can timely modify the transfer sched-
ule for each iteration based on the latest NetHint information.

8.3 NetHint in Simulations
We use simulations to evaluate NetHint in large-scale
deployments and in various operating environments. Our
simulator is written in 5000 lines of Rust. The simulation
is at flow level, and throughput of each flow is the result of
solving a max-min fairness formula based on traffic demand.
We simulate a CPU cluster and a GPU cluster individually.
Both the CPU and GPU clusters have 150 racks. In the GPU
cluster network, each rack has 6 machines with 100 Gbps NIC,
and each rack has total upstream bandwidth of 200 Gbps. In
the CPU cluster network, each rack has 18 machines with
100 Gbps NIC and the total upstream bandwidth is 600 Gbps.
The oversubscription ratios are both 3. In the CPU cluster, each
machine has 4 VMs. In the GPU cluster, each machine only
has 1 VM. All VMs have bandwidth guarantee of 25 Gbps.

Results. Figure 9 shows the NetHint’s speedup of the three
workloads in our simulations. In summary, the trend of the
simulation results matches what we have observed on the
testbed. NetHint speeds up communication by 2.7x, 1.5x, and
1.2x, respectively. On allreduce, the speedup is higher than
that on the testbed because the number of hosts involved in
a job is larger than that on the testbed, and thus the amount
of cross-rack traffic is also larger, giving NetHint more room
to optimize transfer schedules.

User probing incurs substantial overheads in both traffic and
latency. Figure 10 shows the overheads of using NetHint and

1336 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (1.79x)
NetHint (2.70x)

(a) Distributed deep learning

0.8 1.2 1.6 2.0 2.4 2.8
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (1.19x)
NetHint (1.47x)

(b) Ensemble model serving

0.0 0.4 0.8 1.2 1.6 2.0 2.4
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (0.62x)
NetHint (1.19x)

(c) MapReduce
Figure 9: Simulation results: Comparing NetHint with dynamic user probe in the default background traffic setting.

10
1

10
3

10
5

Shuffle Size (GB)

10
−6

10
−3

10
0

10
3

Pr
ob

e
Tr

af
fic

 /
Ap

p
Tr

af
fic

Solution
User Probe
NetHint
Job Size
25
50
75
100
125

(a) Probing traffic over application traffic

0 100
Job Size

0

2

4

6

Ex
tra

 L
at

en
cy

 (s
) User Probe

NetHint

(b) Extra time
Figure 10: Simulation results [MapReduce]: Extra overhead for
MapReduce jobs comparing NetHint and user probing.

user probing in MapReduce. The amount of overhead depends
on both MapReduce shuffle size and job size. Figure 10a
shows the extra traffic introduced by NetHint and user probing
over application traffic. NetHint only adds less than 0.1% extra
traffic. User probing, in contrast, adds 15% to 420% extra
traffic, and 90% of jobs double their traffic. This is because user
probing needs to generate probe traffic, and each application
has to probe independently. For large shuffle sizes, the probing
traffic is less of a concern because it constitutes a smaller frac-
tion of the total traffic. Figure 10b shows the extra latency due
to probing and fetching hints for MapReduce jobs of various
sizes. NetHint only adds a constant RTT-level extra latency
which is negligible. User probing has a large latency overhead,
which is linear in job size. This is expected because user prob-
ing needs to run for n/2 rounds, where n is the job size. There
are a set of MapReduce jobs that are penalized substantially by
user probing (as shown in Figure 9c). These are MapReduce
jobs with large job sizes but with small shuffle sizes.

When should NetHint use topology information only? As
we have described in §6, there are two situations we prefer
letting NetHint use topology information only: (1) workload
granularity is large, and (2) overhead of computing a transfer
schedule is non-negligible. To demonstrate these situations,
we set the slow-moving background traffic change frequency
to every 0.2 seconds. Other environment settings remain the
same as those in previous simulations.

To show the case when background traffic changes faster
than job completion time, we run 100 broadcast jobs with the
model sizes increased to 1 GB. We let NetHint recompute a
new broadcast strategy every iteration (but we still guarantee
that the computational overhead is under a certain threshold
p=10%). We use NetHint-TO to denote using only topology
information when calculating the transfer schedule. We use
NetHint-BW to denote using bandwidth information when

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

NetHint-TO (1.39x)
NetHint-BW (1.26x)

(a) Coarse-grained workloads

0.90 0.96 1.02 1.08 1.14 1.20 1.26 1.32
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

NetHint-TO (1.24x)
NetHint-BW (1.02x)

(b) Non-negligible overhead to
compute a transfer schedule

Figure 11: Simulation results [Model serving]: Using topology
information alone can outperform using bandwidth information.

calculating the transfer schedule. Figure 11a shows that
NetHint-TO and NetHint-BW speed up the communication by
1.4x and 1.3x. NetHint-BW is slightly slower than NetHint-TO.
Applying a bandwidth-aware algorithm does not bring benefit
compared with using topology information only because the
background traffic changes even within a single broadcast.
Instead, it can slow down the job due to the additional overhead
to compute data transfer schedules.

To demonstrate an extreme example for the computational
overhead, we run 100 broadcasts of 64 workers with data size
set to 12 MB, and we double the bandwidth capacity of ToR
switch. Figure 11b shows that NetHint-TO and NetHint-BW
speed up by 1.2x and 1.0x compared with no information.
NetHint-BW cannot improve because the computation latency
using LP is large in contrast to the broadcast latency on such a
small data size. It has to adapt its traffic less frequently (≈0.2s)
to ensure the compute overhead is within 10% of the total
job completion time. Without being affected by inaccurate
hints, NetHint-TO aims to minimize the cross-rack traffic,
thus achieving better performance.

Figure 12 shows which adaptation method NetHint choose
under different background traffic change periods and
oversubscription ratios. The result demonstrates that NetHint
chooses the best of NetHint-TO and NetHint-BW for all the
three applications we use and also for both oversubscription
ratio of 3 and 1.5.

Inaccurate bandwidth estimation. The bandwidth estima-
tions in Equation 1 and Equation 2 is based on approximations,
as the accurate estimation requires knowing the traffic demand
for each tenant. One question to ask is whether NetHint’s
design fundamentally relies on the accuracy of bandwidth
estimation. To answer this question, we intentionally add noise
to the input of NetHint. Having additional noise of x% means
the link utilization provided to NetHint is between 100-x%

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1337

0.1 0.8 6.4 51.2
Background Traffic Change Period (s)

1.75

2.00

2.25

2.50

2.75

Sp
ee

du
p

NetHint-TO
NetHint-BW
NetHint

(a) Deep Learning (Oversub=3)

0.1 0.8 6.4 51.2
Background Traffic Change Period (s)

1.2

1.4

1.6

Sp
ee

du
p NetHint-TO

NetHint-BW
NetHint

(b) Deep Learning (Oversub=1.5)

0.1 0.8 6.4 51.2
Background Traffic Change Period (s)

1.2

1.3

1.4

1.5

Sp
ee

du
p

NetHint-TO
NetHint-BW
NetHint

(c) Model Serving (Oversub=3)

0.1 0.8 6.4 51.2
Background Traffic Change Period (s)

1.0

1.1

1.2

Sp
ee

du
p

NetHint-TO
NetHint-BW
NetHint

(d) MapReduce (Oversub=3)
Figure 12: Simulation results: Average speedup to background traffic change period under two different topology settings. The shaded area
represents 95% confidence interval.

0 20 40 60 80
Bandwidth Estimation Noise (%)

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

Deep Learning
Ensemble Model Serving

Figure 13: Simulation results:
NetHint’s speedup to not using
network information when we
add noise to the input of NetHint.

5 10 20 30
of Overlapped Jobs

0.0

0.5

1.0

1.5

Sp
ee

du
p

Deep Learning
MapReduce

Figure 14: Simulation results:
NetHint’s performance when
varying the number of overlapped
jobs.

and 100+x% of the actual utilization. We then evaluate the
speedup of allreduce and broadcast jobs. Figure 13 shows the
result. NetHint’s speed up degrades gracefully. NetHint can
still outperform not using network information when there
is up to at most 50% noise.

Performance stability. To evaluate if NetHint’s performance
remains stable when the number of NetHint users is large, we
increase the number of overlapped jobs. For deep learning,
we enlarge the rack size to allow more jobs to share a ToR
link and start all the jobs at the beginning. For MapReduce, we
scale up the job arrival rate to create more overlapping among
jobs. Figure 14 shows that NetHint can constantly achieve
performance gain over not using network information.

Sensitivity to network configurations. We evaluate
NetHint’s speedup under different network configurations in
terms of the number of machines per rack and oversubscription
ratios. We vary the number of machines per rack while keeping
the oversubsription the same at 3. Figure 15a shows that
NetHint can reduce the communication latency consistently
for different rack sizes. We then vary the oversubscription ratio.
Figure 15b shows that NetHint’s improvement compared with
not using network information increases as oversubscription
ratio increases. This is because, when oversubscription ratio
is high, the cross-rack communication is more likely to
become the bottleneck. NetHint can mitigate this bottleneck
by reducing the total amount of cross-rack traffic.

Performance gain over perfect user probing. In our
evaluation, for n hosts, user probing is performed in n/2
rounds. In each round, it measures the bidirectional bandwidth
and latency between n/2 pairs of hosts in parallel for a
certain duration (default to 100 ms). Moreover, we show some
evidence that it can be difficult to design better user probing

1.5 2.0 2.5
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F Rack Size
5
10
20

(a) Number of machines per rack

1.0 1.5 2.0 3.0 4.0 10.0
Oversubscription Ratio

0

2

4

6

Sp
ee

du
p

NetHint

(b) Oversubscription ratios
Figure 15: Simulation results [Distributed deep learning]:
NetHint’s speedup to not using network information when we
evaluate under different deployment environments.

technique to achieve similar performance as NetHint. First,
we demonstrate how low the user probing duration has to be in
order to achieve similar performance as NetHint. For this, we
artificially reduce the probing duration while ensuring probing
is accurate in simulations. Figure 16a shows the result: even
when probing duration is reduced to 1 ms, NetHint still has
a small performance advantage over user probing. Second, we
show that such a low probing duration (i.e., 1 ms) for accurate
bandwidth estimation can be difficult due to data center
microbursts. We simulate data center microbursts based on
measurement results in Facebook data centers [89] and calcu-
late whether probing for x ms is sufficient to predict the average
bandwidth of 100 ms. Figure 16b shows that if we measure for
less than 25 ms, there is a 50% probability that the estimation
error is above 75%. This is because there are gaps between
microbursts, when a busy link is temporarily idle. Probing for
such a short amount of time may not detect any traffic.

Does NetHint work for other fairness models? The
rapid advancement in the programmability in emerging
programmable switches makes it possible to implement other
types of fairness models in the network [74, 83]. This trend
makes it interesting to also understand NetHint’s potential
performance gains if we move to other fairness models in the
future. We simulate the same allreduce jobs except that we
modify our simulator for different fairness models. As shown
in Figure 17, the trend of the simulation results matches what
we have obtained in a per-flow based fairness setting.

9 Discussion

Herd behaviors. Tenants adapting transfer schedules with pro-
vided hints in a distributed way can potentially cause stability
issues. For example, given the information of an under-utilized

1338 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

100.0 25.0 10.0 1.0
Probing Duration Per Round (ms)

0

1

2

Sl
ow

do
w

n

Deep Learning
MapReduce

(a) Sensitivity to probing cost

0 25 50 75 100
Bandwidth Estimation Error (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Probing Duration (ms)
1
10

25

(b) Probing accuracy
Figure 16: Simulation results: The speedup of user probing to
NetHint and the relative bandwidth estimation difference under
different assumptions of probing durations. The black line in (a)
represents NetHint.

link, many tenants may make identical choices to move traffic
to this link, causing congestion. Such herd behavior causes load
imbalance and performance oscillation in distributed load bal-
ancing problems [2,59,88]. We note that herd behavior is a com-
mon problem in some specific applications such as distributed
load balancers. There are also standard techniques such as
adding random jitters, and power of two choices to alleviated
herd effect [59]. Whether and how NetHint should help specific
applications avoid herd behavior is an interesting future direc-
tion. In the workload and setting of our evaluation, NetHint’s
speedup does not decrease when we increase the number of
overlapped jobs (Figure 14). This infers that the performance
of NetHint is not significantly affected by herd behavior.

Other competitive concerns for NetHint. NetHint exposes
network utilization information to tenants. Network utilization
can be a sensitive information. For example, one can infer
whether a cloud has customers and whether a cloud provider
does a decent job in network load balancing. NetHint makes
it easy for a customer to compare network characteristics
at different times. If a customer finds that the achievable
bandwidth is reducing via NetHint, there may be a risk that
the customer will switch to another cloud provider.

10 Related Work
Sharing network bandwidth. How to share network among
many applications or cloud tenants is one of the oldest prob-
lems in computer networks. Today, network sharing is opaque
to the application or cloud tenants. Within a single tenant,
bandwidth sharing is through the fairness property of the un-
derlying congestion control algorithms [24]. Across tenants, a
cloud provider usually enforces strong isolation through static
bandwidth allocation [68] or work-conserving bandwidth
guarantee [9, 10, 50] on the NICs. It is difficult to enable either
static bandwidth allocation or work-conserving bandwidth
guarantee in the network because commodity switches have
limited numbers of hardware queues. NetHint is complemen-
tary to these bandwidth sharing design: NetHint does not
change any fairness property of the network. NetHint provides
guidance for applications to use the network bandwidth better.
A non-participating tenant can simply ignore the hint.

Collective communication and task placement based on

0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (1.82x)
NetHint (2.72x)

(a) Per-tenant fairness

1.2 1.5 1.8 2.1 2.4 2.7 3.0
Speedup to No Information

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

User Probe (1.78x)
NetHint (2.57x)

(b) Per-VM-pair fairness
Figure 17: Simulation results [Distributed deep learning]:
Speedup for other fairness models.

network characteristics. Many related works optimize
collective communication [20, 29, 45, 64, 79] or task place-
ment [39, 49, 75, 80, 91] based on topology or bandwidth
information. Similar considerations can also be applied inside
OS for multi-core machines [11]. Most of these solutions
assume the network topology or bandwidth information is
already known. As such, NetHint can work in complementary
with these solutions by providing them timely network infor-
mation. Second, these works do not consider a multi-tenant
environment. They assume workloads can be controlled by a
logically centralized controller, while we assume each tenant’s
workload is controlled only by the tenant itself. Because
tenants do not know other tenants’ communication patterns,
this knowledge needs to be provided either through cloud
provider’s support as proposed in this paper or using probing.

User probing. In addition to PLink and Choreo, many
past works [5, 72, 81] also propose to measure network
characteristics in wide-area networks to choose Internet route.
NetHint is different in two aspects: (1) NetHint does not rely
on active probe, and thus NetHint has low cost. NetHint simply
reads counters directly from NICs or operating systems. (2)
NetHint is for distributed applications that can adapt their
transfer schedules rather than choosing routes in the network.

11 Conclusion

Today, the networking abstraction a cloud tenant has is a
black box. This prevents a tenant’s data-intensive applications
from adapting the data transfer schedules to achieve high
performance. We design and implement NetHint, a new
paradigm for division of work between a cloud provider
and its tenants. A cloud provider provides a hint, network
characteristics (e.g., a virtual link-layer network topology,
number of co-locating tenants, available bandwidth), directly
to its tenants. Applications then adapt their transfer schedules
based on these hints. We demonstrate the performance gain
of NetHint on three use cases of NetHint including allreduce
communication in distributed deep learning, broadcast in
serving ensemble models, and scheduling tasks in MapReduce
frameworks. Our evaluations show that NetHint improves
the performance of these workloads by up to 2.7×, 1.5×,
and 1.2×, respectively. Our source code is available at
https://github.com/crazyboycjr/nethint.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1339

https://github.com/crazyboycjr/nethint

Acknowledgement
We thank our shepherd John Wilkes and the anonymous
NSDI reviewers for their insightful feedback. We thank Alvin
R. Lebeck and Xiaowei Yang for their feedback on earlier
versions of the paper. Our work is partially supported by an
Amazon Research Award, a Meta Research Award, and an
IBM Academic Award.

References
[1] Mohammad Al-Fares, Sivasankar Radhakrishnan,

Barath Raghavan, Nelson Huang, and Amin Vahdat.
Hedera: Dynamic Flow Scheduling for Data Center
Networks. In NSDI, 2010.

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy
Fingerhut, Vinh The Lam, Francis Matus, Rong Pan,
Navindra Yadav, and George Varghese. CONGA:
Distributed Congestion-Aware Load Balancing for
Datacenters. In SIGCOMM, 2014.

[3] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data Center
TCP (DCTCP). In SIGCOMM, 2010.

[4] Ganesh Ananthanarayanan, Srikanth Kandula, Albert
Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and Edward
Harris. Reining in the Outliers in Map-Reduce Clusters
using Mantri. In OSDI, 2010.

[5] David Andersen, Hari Balakrishnan, Frans Kaashoek,
and Robert Morris. Resilient Overlay Networks. In
SOSP, 2001.

[6] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis,
Greg O’Shea, and Eno Thereska. End-to-end Perfor-
mance Isolation Through Virtual Datacenters. In OSDI,
2014.

[7] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang (Harry) Liu, Jitu Padhye, Boon Thau Loo,
and Geoff Outhred. 007: Democratically Finding the
Cause of Packet Drops. In NSDI, 2018.

[8] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel
Cletheroe, Istvan Haller, Krzysztof Jozwik, Fotini
Karinou, Sophie Lange, Kai Shi, Benn Thomsen, and
Hugh Williams. Sirius: A Flat Datacenter Network with
Nanosecond Optical Switching. In SIGCOMM, 2020.

[9] Hitesh Ballani, Paolo Costa, Thomas Karagiannis,
and Ant Rowstron. Towards Predictable Datacenter
Networks. In SIGCOMM, 2011.

[10] Hitesh Ballani, Keon Jang, Thomas Karagiannis,
Changhoon Kim, Dinan Gunawardena, and Greg O’Shea.

Chatty Tenants and the Cloud Network Sharing Problem.
In NSDI, 2013.

[11] Andrew Baumann, Paul Barham, Pierre-Evariste
Dagand, Tim Harris, Rebecca Isaacs, Simon Peter,
Timothy Roscoe, Adrian Schüpbach, and Akhilesh
Singhania. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In SOSP, 2009.

[12] Theophilus Benson, Aditya Akella, and David A. Maltz.
Network Traffic Characteristics of Data Centers in the
Wild. In IMC, 2010.

[13] Chandra Chekuri and Kent Quanrud. Near-linear time
approximation schemes for some implicit fractional
packing problems. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 801–820. SIAM, 2017.

[14] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible,
and Karthik Kalyanaraman. Project Adam: Building an
Efficient and Scalable Deep Learning Training System.
In OSDI, 2014.

[15] Mosharaf Chowdhury and Ion Stoica. Efficient Coflow
Scheduling Without Prior Knowledge. In SIGCOMM,
2015.

[16] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica.
Efficient Coflow Scheduling with Varys. In SIGCOMM,
2014.

[17] Coflow-Benchmark. https://github.com/coflow/
coflow-benchmark, 2020.

[18] Bryce Cronkite-Ratcliff, Aran Bergman, Shay Vargaftik,
Madhusudhan Ravi, Nick McKeown, Ittai Abraham,
and Isaac Keslassy. Virtualized Congestion Control. In
SIGCOMM, 2016.

[19] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified Data Processing on Large Clusters. In OSDI,
2004.

[20] Mathijs Den Burger, Thilo Kielmann, and Henri E
Bal. Balanced Multicasting: High-Throughput
Communication for Grid Applications. In SC, 2005.

[21] Advait Dixit, Pawan Prakash, Y Charlie Hu, and
Ramana Rao Kompella. On the Impact of Packet
Spraying in Data Center Networks. In INFOCOM, 2013.

[22] Vanini Erico, Pan Rong, Alizadeh Mohammad, Taheri
Parvin, and Edsall Tom. Let it Flow: Resilient Asymmet-
ric Load Balancing with Flowlet Switching. In NSDI,
2017.

1340 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/coflow/coflow-benchmark
https://github.com/coflow/coflow-benchmark

[23] Introducing data center fabric, the next-
generation Facebook data center network.
https://engineering.fb.com/2014/11/14/
production-engineering/introducing-data-
center-fabric-the-next-generation-facebook-
data-center-network, 2020.

[24] S. Ben Fred, T. Bonald, A. Proutiere, G. Régnié, and
J. W. Roberts. Statistical Bandwidth Sharing: A Study
of Congestion at Flow Level. In SIGCOMM, 2001.

[25] Harold N Gabow and KS Manu. Packing Algorithms
for Arborescences (And Spanning Trees) In Capacitated
Graphs. Mathematical Programming, 82(1):83–109,
1998.

[26] Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani,
and Mohammad Alizadeh. JUGGLER: A Practical
Reordering Resilient Network Stack for Datacenters. In
EuroSys, 2016.

[27] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee,
Nikhil Devanur, Janardhan Kulkarni, Gireeja Ranade,
Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. ProjecToR: Agile
Reconfigurable Data Center Interconnect. In SIGCOMM,
2016.

[28] Soudeh Ghorbani, Brighten Godfrey, Yashar Ganjali,
and Amin Firoozshahian. Micro Load Balancing in Data
Centers with DRILL. In HotNets, 2015.

[29] Y. Gong, B. He, and J. Zhong. Network Performance
Aware MPI Collective Communication Operations in the
Cloud. IEEE Transactions on Parallel and Distributed
Systems, 26(11):3079–3089, 2015.

[30] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu,
and Chuanxiong Guo. Tiresias: A GPU Cluster Manager
for Distributed Deep Learning. In NSDI, 2019.

[31] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A Large-Scale System for Data Center
Network Latency Measurement and Analysis. In
SIGCOMM, 2015.

[32] Apache Hadoop. https://hadoop.apache.org/, 2020.

[33] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. Re-Architecting Datacenter Networks
and Stacks for Low Latency and High Performance. In
SIGCOMM, 2017.

[34] Vipul Harsh, Sangeetha Abdu Jyothi, and P. Brighten
Godfrey. Spineless Data Centers. In HotNets, 2020.

[35] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy
Campbell. TicTac: Accelerating Distributed Deep Learn-
ing with Communication Scheduling. In A. Talwalkar,
V. Smith, and M. Zaharia, editors, MLSys, 2019.

[36] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter,
John Carter, and Aditya Akella. Presto: Edge-based
Load Balancing for Fast Datacenter Networks. In
SIGCOMM, 2015.

[37] Keqiang He, Eric Rozner, Kanak Agarwal, Yu (Jason)
Gu, Wes Felter, John Carter, and Aditya Akella. AC/DC
TCP: Virtual Congestion Control Enforcement for
Datacenter Networks. In SIGCOMM, 2016.

[38] Hydro. https://github.com/hydro-project, 2020.

[39] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram
Rao, Konstantin Makarychev, and Matthew Caesar.
Network-Aware Scheduling for Data-Parallel Jobs: Plan
When You Can. In SIGCOMM, 2015.

[40] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra
Fedorova, and Gennady Pekhimenko. Priority-based
Parameter Propagation for Distributed DNN Training. In
A. Talwalkar, V. Smith, and M. Zaharia, editors, MLSys,
2019.

[41] Myeongjae Jeon, Shivaram Venkataraman, Amar
Phanishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of Large-Scale Multi-Tenant GPU Clusters for
DNN Training Workloads. In ATC, 2019.

[42] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and
KyoungSoo Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In NSDI, 2014.

[43] Vimalkumar Jeyakumar, Mohammad Alizadeh, David
Mazières, Balaji Prabhakar, Albert Greenberg, and
Changhoon Kim. EyeQ: Practical Network Performance
Isolation at the Edge. In NSDI, 2013.

[44] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In NSDI, 2019.

[45] Nicholas T Karonis, Bronis R De Supinski, Ian Foster,
William Gropp, Ewing Lusk, and John Bresnahan.
Exploiting Hierarchy in Parallel Computer Networks to
Optimize Collective Operation Performance. In IPDPS,
2000.

[46] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy,
Aran Bergman, Changhoon Kim, and Jennifer Rexford.
Clove: Congestion-Aware Load Balancing at the Virtual
Edge. In CoNEXT, 2017.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1341

https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network
https://hadoop.apache.org/
https://github.com/hydro-project

[47] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh
Sivaraman, and Jennifer Rexford. HULA: Scalable Load
Balancing Using Programmable Data Planes. In SOSR,
2016.

[48] Praveen Kumar, Nandita Dukkipati, Nathan Lewis,
Yi Cui, Yaogong Wang, Chonggang Li, Valas Valancius,
Jake Adriaens, Steve Gribble, Nate Foster, and Amin
Vahdat. PicNIC: Predictable Virtualized NIC. In
SIGCOMM, 2019.

[49] Katrina LaCurts, Shuo Deng, Ameesh Goyal, and Hari
Balakrishnan. Choreo: Network-Aware Task Placement
for Cloud Applications. In IMC, 2013.

[50] Vinh The Lam, Sivasankar Radhakrishnan, Rong Pan,
Amin Vahdat, and George Varghese. Netshare and
Stochastic Netshare: Predictable Bandwidth Allocation
for Data Centers. SIGCOMM Comput. Commun. Rev.,
2012.

[51] Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian
Popa, Sujata Banerjee, Joon-Myung Kang, and Puneet
Sharma. Application-Driven Bandwidth Guarantees in
Datacenters. In SIGCOMM, 2014.

[52] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor,
Malveeka Tewari, Geoffrey M. Voelker, George Papen,
Alex C. Snoeren, and George Porter. Circuit Switching
Under the Radar with REACToR. In NSDI, 2014.

[53] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy,
and Thomas Anderson. F10: A Fault-Tolerant
Engineered Network. In NSDI, 2013.

[54] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron
Kassner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: Robust and General Sketch-Based
Monitoring in Software Switches. In SIGCOMM, 2019.

[55] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One Sketch to
Rule Them All: Rethinking Network Flow Monitoring
with UnivMon. In SIGCOMM, 2016.

[56] Lpsolve. http://web.mit.edu/lpsolve_v5520/doc/
index.htm, 2020.

[57] Liang Luo, Peter West, Jacob Nelson, Arvind Krish-
namurthy, and Luis Ceze. PLink: Discovering and
Exploiting Locality for Accelerated Distributed Training
on the Public Cloud. In MLSys, 2020.

[58] William M. Mellette, Rob McGuinness, Arjun Roy, Alex
Forencich, George Papen, Alex C. Snoeren, and George
Porter. RotorNet: A Scalable, Low-Complexity, Optical
Datacenter Network. In SIGCOMM, 2017.

[59] Michael Mitzenmacher. How Useful Is Old Information?
IEEE Transactions on Parallel and Distributed Systems,
11(1):6–20, 2000.

[60] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A Receiver-Driven
Low-Latency Transport Protocol Using Network
Priorities. In SIGCOMM, 2018.

[61] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A Distributed Framework for
Emerging AI Applications. In OSDI, 2018.

[62] Zhixiong Niu, Hong Xu, Peng Cheng, Qiang Su,
Yongqiang Xiong, Tao Wang, Dongsu Han, and Keith
Winstein. NetKernel: Making Network Stack Part of the
Virtualized Infrastructure. In USENIX ATC, 2020.

[63] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu,
and Costin Raiciu. Stateless Datacenter Load-balancing
with Beamer. In NSDI, 2018.

[64] Pitch Patarasuk and Xin Yuan. Bandwidth Efficient All-
reduce Operation on Tree Topologies. In IPDPS, 2007.

[65] Y Peng, Y Zhu, Y Chen, Y Bao, B Yi, C Lan, C Wu,
and C Guo. A Generic Communication Scheduler for
Distributed DNN Training Acceleration. In SOSP, 2019.

[66] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson,
Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang,
Joe Stringer, Pravin Shelar, Keith Amidon, and Martin
Casado. The Design and Implementation of Open
vSwitch. In NSDI, 2015.

[67] Lucian Popa, Praveen Yalagandula, Sujata Banerjee,
Jeffrey C. Mogul, Yoshio Turner, and Jose Renato Santos.
ElasticSwitch: Practical Work-Conserving Bandwidth
Guarantees for Cloud Computing. In SIGCOMM, 2013.

[68] Barath Raghavan, Kashi Vishwanath, Sriram Ramabhad-
ran, Kenneth Yocum, and Alex C. Snoeren. Cloud Con-
trol with Distributed Rate Limiting. In SIGCOMM, 2007.

[69] Costin Raiciu, Sebastien Barre, Christopher Pluntke,
Adam Greenhalgh, Damon Wischik, and Mark Handley.
Improving Datacenter Performance and Robustness with
Multipath TCP. In SIGCOMM, 2011.

[70] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the Social Network’s
(Datacenter) Network. In SIGCOMM, 2015.

[71] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Krish-
namurthy, Masoud Moshref, Dan R. K. Ports, and Peter

1342 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://web.mit.edu/lpsolve_v5520/doc/index.htm
http://web.mit.edu/lpsolve_v5520/doc/index.htm

Richtárik. Scaling Distributed Machine Learning with
In-Network Aggregation. Technical report, KAUST,
Feb 2019. http://hdl.handle.net/10754/631179.

[72] S. Savage, T. Anderson, Amit Aggarwal, David Becker,
N. Cardwell, A. Collins, Eric Hoffman, John Snell, Amin
Vahdat, G. Voelker, and J. Zahorjan. Detour: Informed
Internet Routing and Transport. IEEE Micro, 19:50–59,
1999.

[73] Brandon Schlinker, Radhika Niranjan Mysore, Sean
Smith, Jeffrey C. Mogul, Amin Vahdat, Minlan Yu, Ethan
Katz-Bassett, and Michael Rubin. Condor: Better Topolo-
gies Through Declarative Design. In SIGCOMM, 2015.

[74] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and
Arvind Krishnamurthy. Approximating Fair Queueing
on Reconfigurable Switches. In NSDI, 2018.

[75] Haiying Shen, Ankur Sarker, Lei Yu, and Feng Deng.
Probabilistic Network-Aware Task Placement for
MapReduce Scheduling. In 2016 IEEE International
Conference on Cluster Computing (CLUSTER), pages
241–250. IEEE, 2016.

[76] Ankit Singla, Chi-Yao Hong, Lucian Popa, and
P. Brighten Godfrey. Jellyfish: Networking Data Centers
Randomly. In NSDI, 2012.

[77] Shin-Yeh Tsai and Yiying Zhang. LITE Kernel RDMA
Support for Datacenter Applications. In SOSP, 2017.

[78] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin,
Ivo Jimenez, Jan Rellermeyer, Carlos Maltzahn, Robert
Ricci, and Alexandru Iosup. Is Big Data Performance Re-
producible in Modern Cloud Networks? In NSDI, 2020.

[79] Guanhua Wang, Shivaram Venkataraman, Amar Phan-
ishayee, Nikhil Devanur, Jorgen Thelin, and Ion Stoica.
Blink: Fast and Generic Collectives for Distributed ML.
In I. Dhillon, D. Papailiopoulos, and V. Sze, editors,
MLSys, 2020.

[80] R. Wang, J. A. Wickboldt, R. P. Esteves, L. Shi, B. Jen-
nings, and L. Z. Granville. Using Empirical Estimates
of Effective Bandwidth in Network-Aware Placement of
Virtual Machines in Datacenters. IEEE Transactions on
Network and Service Management, 13(2):267–280, 2016.

[81] Rich Wolski,Neil T. Spring, and Jim Hayes. The Network
Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing. Future Gener.
Comput. Syst., 15(5–6):757–768, October 1999.

[82] Wencong Xiao, Romil Bhardwaj, Ramachandran
Ramjee, Muthian Sivathanu, Nipun Kwatra, Zhenhua
Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, et al. Gandiva: Introspective Cluster Scheduling
for Deep Learning. In OSDI, 2018.

[83] Zhuolong Yu, Jingfeng Wu, Vladimir Braverman, Ion
Stoica, and Xin Jin. Twenty Years After: Hierarchical
Core-Stateless Fair Queueing. In NSDI, 2021.

[84] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
Scheduling: A Simple Technique for Achieving Locality
and Fairness in Cluster Scheduling. In EuroSys, 2010.

[85] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tatha-
gata Das, Michael Armbrust, Ankur Dave, Xiangrui
Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
and Ion Stoica. Apache Spark: A Unified Engine for Big
Data Processing. Commun. ACM, 2016.

[86] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong
Ho, Xiaodan Liang, Zhiting Hu, Jinliang Wei, Pengtao
Xie, and Eric P Xing. Poseidon: An Efficient Commu-
nication Architecture for Distributed Deep Learning on
GPU Clusters. In ATC, 2017.

[87] Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf
Chowdhury, and Yanhui Geng. CODA: Toward
Automatically Identifying and Scheduling Coflows in
the Dark. In SIGCOMM, 2016.

[88] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and
Mosharaf Chowdhury. Resilient Datacenter Load
Balancing in the Wild. In SIGCOMM, 2017.

[89] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-Resolution Measurement of Data
Center Microbursts. In IMC, 2017.

[90] Yangming Zhao, Kai Chen, Wei Bai, Chen Tian, Yanhui
Geng,Yiming Zhang,Dan Li, and Sheng Wang. RAPIER:
Integrating Routing and Scheduling for Coflow-aware
Data Center Networks. In INFOCOM, 2015.

[91] Yangming Zhao, Chen Tian, Jingyuan Fan, Tong Guan,
and Chunming Qiao. RPC: Joint Online Reducer
Placement and Coflow Bandwidth Scheduling for
Clusters. In 2018 IEEE 26th International Conference
on Network Protocols (ICNP), 2018.

[92] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra
Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. Congestion Control for Large-Scale
RDMA Deployments. In SIGCOMM, 2015.

[93] Siyuan Zhuang, Zhuohan Li, Danyang Zhuo, Stephanie
Wang, Eric Liang, Robert Nishihara, Philipp Moritz,
and Ion Stoica. Hoplite: Efficient and Fault-Tolerant
Collective Communication for Task-Based Distributed
Systems. In SIGCOMM, 2021.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1343

	Introduction
	Background
	Black-Box Networking Abstraction
	Adaptiveness in Data-Intensive Applications
	Addressing the Mismatch

	NetHint Overview
	Providing NetHint Service
	What Is in the Hint?
	Timely NetHint with Low Cost

	Adapting Transfer Schedules with NetHint
	Optimizing Collective Communication
	Optimizing Task Placement

	Flexible Adaptation for Stale Information
	Implementation
	Evaluation
	Setup and Workloads
	NetHint in Testbed Experiments
	NetHint in Simulations

	Discussion
	Related Work
	Conclusion

