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Abstract

Model serving systems observe massive volumes of infer-
ence requests for many emerging interactive web services.
These systems need to be scalable, guarantee high system
goodput and maximize resource utilization across compute
units. However, achieving all three goals simultaneously is
challenging since inference requests have very tight latency
constraints (10-500ms), and production workloads can be
extremely unpredictable at such small time granularities.
We present SHEPHERD, a model serving system that
achieves all three goals in the face of workload unpredictabil-
ity. SHEPHERD uses a two-level design that decouples model
serving into planning and serving modules. For planning,
SHEPHERD exploits the insight that while individual request
streams can be highly unpredictable, aggregating request
streams into moderately-sized groups greatly improves pre-
dictability, permitting high resource utilization as well as scal-
ability. For serving, SHEPHERD employs a novel online algo-
rithm that provides guaranteed goodput under workload un-
predictability by carefully leveraging preemptions and model-
specific batching properties. Evaluation results over produc-
tion workloads show that SHEPHERD achieves up to 18.1x
higher goodput and 1.8 x better utilization compared to prior
state-of-the-art, while scaling to hundreds of workers.

1 Introduction

Model inference has grown to become a critical component of
many interactive applications [1-11]. Facebook, for instance,
serves tens of trillions of inference requests per day [12].
Compared to model training, model inference dominates pro-
duction costs: on AWS, inference accounts for over 90% of
the machine learning infrastructure cost [13]. This has driven
significant effort in the design of model serving systems to
serve inference requests from several applications with deep
neural network (DNN) architectures, often using hardware
accelerators like graphics processing units (GPUs) to meet
tight per-request latency service-level objectives (SLOs), e.g.,
50-500ms. These systems typically group requests with the
same SLO and target model into separate request streams, and
must make two types of scheduling decisions across them to
meet system goals. First, they make request serving decisions
to maximize system goodput, i.e., the number of requests that
meet their SLO deadlines per unit time. Second, they make
resource provisioning decisions in order to scale to a massive
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number of request streams using large pools of GPUs, while
ensuring high utilization for the GPU pool for cost-efficiency.

We find that meeting these goals is challenging due to short-
term workload unpredictablity: our analysis of both synthetic
and production workloads (§2.2) indicates that while the aver-
age request arrival rates are predictable over longer timescales
(i.e., hours), they are bursty and unpredictable at smaller time
granularities (i.e., millisconds) that must be considered when
scheduling requests to meet their SLO deadlines. As such,
existing solutions [3—11] fail to meet one or more of the above
goals due to two key reasons.

First, existing systems expose a hard tradeoff between
resource utilization and scalability under short-term unpre-
dictability, as they typically employ one of two classes of
scheduling policies: (1) periodic per-stream policies [3-9],
which make scheduling decisions (i.e., resource provisioning,
batch sizing, load balancing, etc.) for each stream of requests
separately in a periodic manner, and (2) online global poli-
cies, which make scheduling decisions in an online manner
by time-multiplexing the entire pool of resources (e.g., GPUs)
across all request streams [10, 1 1]. On one hand, while the pe-
riodic and per-stream nature of scheduling for the former per-
mit scaling to many request streams and compute resources,
these systems must over-provision resources to handle unpre-
dictable bursts of requests during each period, resulting in
poor resource utilization. On the other hand, online global
policies can achieve higher resource utilization by adapting
the amount of resources allocated to each stream in an online
fashion, but scale poorly with the number of request streams
and size of the resource pool due to the increased complexity
of online scheduling decisions.

Second, existing approaches are fundamentally unable to
provide any guarantees on system goodput under unpre-
dictable workloads. We establish several important theoretical
results to show why this is fundamental (§5). First, making
the optimal scheduling decisions (e.g., executing, deferring or
dropping a request) requires future knowledge of request ar-
rival patterns, and even with perfect knowledge, the problem is
NP-complete. Second, no online algorithm can achieve good-
put that is even within a constant factor of the optimal with
perfect knowledge without using preemption. Since existing
approaches [10] employ simple heuristics without consider-
ing preemption, their performance can be arbitrarily worse
than the optimal under unpredictable workloads (§2.2).

This raises the question: Is it possible to design a model
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Figure 1: High-level architecture of model serving system
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serving system that is scalable, achieves high utilization, and
provides guaranteed high goodput under unpredictable serv-
ing workloads? In this paper, we answer the above question in
affirmative with SHEPHERD, a model serving system resilient
to workload unpredictability.

To break the utilization-scalability trade-off exposed by
existing solutions, we make an important observation: while
individual request streams can be highly unpredictable, aggre-
gating them into groups permits accurate resource provision-
ing. Moreover, our analysis show that even moderately-sized
groups comprising hundreds to thousands of streams can
already offer reasonable predictability (§3.1). SHEPHERD re-
alizes this insight into a fwo-level design that decouples model
serving into a periodic planning phase and an online serving
phase. For the planning phase, we introduce HERD, a planner
that periodically classifies inference request streams, DNN
models, and GPUs into several serving groups. Then based
on the planning results, the serving phase employs an online
algorithm FLEX to serve requests across streams within each
serving group independently. HERD solves an ILP to effi-
ciently balance utilization and scalability (§4): on one hand,
HERD limits the size of each group, restricting the online
scheduling algorithm’s decision space to a limited number
of streams and GPUs within each group. On the other hand,
HERD provisions a sufficient number of streams and GPU
workers for each serving group to maximize utilization.

To achieve guaranteed high goodput, we design FLEX (§5),
an online scheduling algorithm that leverages preemption and
model-specific batching properties. First, we note that while
preemption permits correcting for sub-optimal scheduling
decisions in the online setting, preempting too often can re-
sult in significant amount of wasted work. As such, FLEX
carefully weighs the utility of the currently running batch of
requests against pending candidate requests to decide whether
or not the running batch should be preempted. Second, FLEX
leverages a model-specific relationship between the batch size
in batched inference execution and its execution latency to
determine appropriate batch sizes and the order of execution
across request streams. We show that both techniques work
in concert to achieve SHEPHERD’s goodput guarantee.

We implement SHEPHERD (§6) and evaluate it using a com-
bination of testbed experiments and large-scale emulations
with both production and synthetic workloads (§7). Our re-
sults show that (1) SHEPHERD achieves up to 18.1x higher
goodput and 1.8 x higher utilization than periodic per-stream
solutions, (2) SHEPHERD achieves up to 5.2 higher goodput

compared to heuristic-based online approaches, and (3) SHEP-
HERD’s goodput scales linearly with the number of workers.

2 Background and Motivation

We begin with an overview of model serving systems (§2.1)
and short-term workload unpredictability (§2.2).

2.1 System Model and Goals

We focus on Deep Neural Network (DNN) model serving
systems [3—11] deployed on GPU clusters (Figure 1). Users
issue inference requests, which the system must serve using
a specific DNN model on one of its GPU workers within a
latency SLO specified for the request, typically 10-500ms [6].
Requests for the same model and with the same latency SLO
are typically grouped into a request stream, with arbitrary
request arrival patterns within each stream. In serving these
streams, serving systems can benefit significantly by batching
requests on GPUs — on an NVIDIA GTX1080, batching to-
gether 32 inference requests improves model serving through-
put by 4.7-13.3x for VGG, ResNet and Inception models
relative to serving them individually [6]. Taking the above
constraints into account, the system makes two scheduling
decisions: model provisioning decisions to determine which
models should be loaded on which and how many GPUs, and
request serving decisions to determine:

* batch size: how many requests to be executed in a batch,

* batch priority: which batch should be executed first, and,
e target GPU: which GPU to execute the batch on.

Note that although multiple batches can be executed on one
GPU worker concurrently, their execution time becomes non-
deterministic due to poor performance isolation on GPUs. As
such, most model serving systems [3—11] execute one batch
at a time for performance predictability.

The key performance goal for a model serving system is
to maximize the system goodput, or the number of served
requests that meet their SLO requirements per unit time; re-
quests that fail to meet them often hold no utility for the user.
Since serving systems must cater to thousands of requests
streams [ 1, 12], the system should also scale to large clus-
ters with thousands of GPUs in order to serve them. Finally,
since inference pipelines comprise the majority of the ma-
chine learning infrastructure costs in production settings [13],
serving systems should target high resource utilization of the
GPU clusters to maximize cost-efficiency.

2.2 Short-term Workload Unpredictability

We find that a key challenge in achieving all three of the goals
outlined above is short-term workload unpredictability' —
while the average request arrival rates are predictable over
longer timescales (e.g., hours), they can be quite unpredictable
at smaller time granularities (e.g., milliseconds) that must be

'Unpredictability in request arrival patterns is orthogonal to performance
predictability demonstrated in prior works [6,10], where the execution latency
for inference requests on GPUs is often quite predictable.
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Figure 2: The coefficient of variance (CV) over the number of
request in each time window vs window size (T, in minutes). The
CV value increases dramatically as time window size decreases.

Solutions | Utilization | Scalability | Goodput
Periodic, per-stream policies [3-9] X v X
Online, global policies [10, 11] v X X
SHEPHERD v v v

Table 1: Existing solutions under short-term unpredictability

considered to meet per-request SLO deadlines. Next, we show
the presence of short-term unpredictability and its impact for
both production and synthetic application workloads. Since
we are unaware of any publicly available production traces
for inference workloads, we use Microsoft’s recently released
traces for Azure Functions [14] for our production workload,
which is noted by recent work to be representative of real-
world inference workloads in terms of both diurnal patterns
and short-term burstiness [4, 10]. The trace contains the num-
ber of function invocations performed at minute granularities
across ~ 46k applications over a two-week period. Our syn-
thetic workload simulates 1k user request streams as Poisson
processes with average arrival rate following an exponential
distribution, a commonly-used approach in approximating
human-generated invocations [3,4, 14].

To study workload unpredictability, we divide the entire
time period into non-overlapping time windows of size T, and
compute the number of requests ; ; in each time window ¢ for
every stream s. We quantify unpredictability in each stream
using the coefficient of variance — the ratio of the standard
deviation to the mean across r; ;. Note that meeting 10-500ms
request SLOs requires optimizing scheduling decisions in
time window sizes (T) of hundreds of milliseconds. Figure 2
shows the average coefficient of variance across all streams
for different values of t: for both synthetic and production
workloads, coefficient of variance increases drastically as T
decreases. Clearly, while statistical models may be able to
estimate average arrival patterns at hours time-scales, the high
coefficient of variance at even minute-granularity makes sub-
second request arrival patterns nearly impossible to predict.

Under short-term workload unpredictability, existing so-
lutions [3—11] are unable to meet one or more of the three
performance goals outlined in §2.1 (Table 1):

Poor resource utilization. Many existing approaches [3-9]
make periodic provisioning and serving decisions for each
user stream independently. Within each period (typically a
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Figure 3: Periodic per-stream policies observe poor utilization.
Request arrival pattern is shown at the top, with each request’s exe-
cution time as well as latency SLO being 10ms. Provisioning one
GPU (top) based on average load causes 70% of the requests to miss
their deadline. Provisioning six GPUs (bottom) allows all requests
to meet their SLOs, but reduces resource utilization to 17%.

few minutes to hours), inference requests are served follow-
ing a fixed schedule determined at the beginning of the pe-
riod. Since scheduling decisions are computed per-stream
and updated only periodically, such approaches can scale to
many streams over massive pools of GPUs. However, these
approaches also tend to over-provisioning GPUs in order to
maximize the number of request SLOs met in the presence of
short-term burstiness, resulting in poor resource utilization.

As a concrete example, Figure 3 shows a user stream with
average arrival rate of 1 request every 10ms, with each re-
quest’s execution time and latency SLO being 10ms as well.
The bursty nature of the workload causes three requests to
arrive at 1=0ms, one at t=40ms and six at #=80ms. Provision-
ing one GPU for the stream based on the average load would
cause 7 out of 10 requests to miss their SLO deadlines —
two from the first burst and five from the last. Provisioning
six GPUs permits all request latency SLOs to be met, but
reduces the resource utilization to 17%, since the GPUs are
collectively idle for 500ms out of 600ms cumulative runtime.

Poor scalability. An alternate approach employed by other
serving systems is to time-multiplex the GPU cluster across
different user streams to achieve better resource utiliza-
tion [10, 11]. Instead of provisioning and scheduling request
for each stream independently and periodically, the system
scales the number of GPUs allocated to each stream in an on-
line manner in response to workload fluctuations. While this
results in better resource utilization, it also limits system scal-
ability — scheduling decisions to maximize system goodput
grow super-linearly in computational complexity with both
the number of request streams as well as the number of GPUs
they are served over. Our scalability evaluation of Clock-
work [10], a recent model serving system that employs such
an approach, shows that its goodput does not scale beyond
a hundred GPU workers, saturating at ~ 50k requests/sec-
ond (§7.1). In contrast, real-world inference serving load at
Facebook can be as high as 2.3 billion requests/second [12].

Lack of goodput guarantees. Maximizing goodput is chal-
lenging under short-term unpredictability. To see why, con-
sider the example in Figure 4, where a request r with an exe-
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Figure 4: Example highlighting challenges in online scheduling
with short-term unpredictability. The optimal scheduling decision
for request r at time ¢ = O depends on future arrivals: the performance
can be far from optimal depending on the scenario and the scheduling
decision to either execute request r or to drop it.

cution duration of 10ms arrives at time ¢ = 0. The request has
a tight SLO deadline that necessitates its immediate execution
for the deadline to be satisfied. The scheduling algorithm has
two choices: to schedule the request, or drop it. Unfortunately,
the optimal decision to maximize system goodput depends on
the future arrival pattern. Specifically, in Scenario A, since no
other request arrives during r’s execution, the optimal choice
is to serve the request. In scenario B, however, where a large
burst of K requests with equally tight deadlines arrive at time
t = 5, the optimal decision is drop r, since it would prevent K
request SLOs from being satisfied in favor of one. Note that if
the SLO deadline for r was not as tight, the scheduler would
have yet another choice to consider — whether or not to defer
r’s execution so that it may be batched with future requests.
Since future arrival patterns cannot be accurately predicted
in the short-term, making the right scheduling choice is in-
herently hard. Existing solutions rely on simple heuristics,
which provides no guarantees on how far the performance
could be from the optimal. While they perform well on certain
workloads, their performance can be arbitrarily worse than the
optimal under unpredictable workloads, similar to the above
example. We validate this observation experimentally in §7.2.

3 SHEPHERD Design
We now outline SHEPHERD’s key design elements.
3.1 Overcoming Short-term Unpredictability

We leverage three key observations to overcome the chal-
lenges introduced by short-term unpredictability (§2.2):

Group-level predictability and group multiplexing. We
observe that while the short-term arrival pattern for individual
request streams are hard to predict, the aggregated arrival
pattern across a group of request streams tends to be much
more predictable. We validate this observation by considering
the same workloads in Figure 2, but randomly classifying
the request streams into serving groups of different sizes and
measuring the coefficient of variance per-group instead of
per-stream. Figure 5 shows that increasing the group sizes
drastically reduces the coefficient of variance even at smaller
window sizes. Note that the networking community has long
made similar observations for bursty network flows, where
statistical multiplexing can drastically improve utilization
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Figure 5: Coefficient of variance (CV) for groups of streams vs
window size (7, in minutes). The CV increase with decreasing
window sizes is much slower for larger group sizes.

by dynamically sharing a network link across network flows
based on their instantaneous demands [15-18].

However, unlike multiplexing a network link across a few
flows, multiplexing thousands of GPU workers across tens of
thousands of SLO-bound request streams in real time presents
a significant scalability challenge. To address it, we observe
that even at moderate group sizes (100—1000), the per-group
coefficient of variance is small enough to make its arrival
pattern highly predictable (Figure 5). This motives a group
multiplexing approach that first partitions the GPU cluster and
request streams into moderately-sized serving groups (§4),
then applies statistical multiplexing per-group to perform
online scheduling (§5). This approach offers a means to break
the tradeoff between resource utilization and scalability faced
by existing systems: moderately sized groups are predictable
enough even in the short-term to accurately provision their
resources for high resource utilization. At the same time,
restricting the online scheduling algorithm’s decision space
to streams and GPUs assigned to each group drastically limits
its computational complexity, allowing the system to scale to
much larger number of request streams and GPUs.

Preemption to correct for scheduling errors. As noted in
the example from Figure 4, the optimal scheduling decision
often depends on future arrival patterns, which can be hard
to predict. As such, any non-clairvoyant online algorithm is
bound to occasionally make sub-optimal scheduling decisions.
We find that the ability to correct such decisions when its sub-
optimality becomes apparent via preemptions is necessary
for achieving performance guarantees for an online schedul-
ing algorithm. For instance, in the example of Figure 4, a
solution can correct for a sub-optimal scheduling decision in
both scenarios by simply preempting r if a burst of requests
arrives later. Preemptions in online scheduling algorithms
are not a new concept; they have been used in a variety of
scheduling contexts [19,20] to achieve bounds on the algo-
rithm’s competitive ratio — the ratio between its performance
and that of an optimal offline algorithm. Leveraging insights
from recent work on context switching for DNN training on
GPUs [21] allows us to realize preemptions efficiently for in-
ference workloads (§6), and combining it with model-specific
batch-latency relationships (described next) permits bounding
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Figure 6: Overview of SHEPHERD design
the competitive ratio for online model serving.

Model-specific batch-latency relationships. Empirical mea-
surements in prior work [6] indicate that a simple linear model
can accurately describe the execution latency for varying re-
quest batch sizes in model serving workloads. In particular,
for a batch B of size |B| being executed on a model m, the
execution latency ¢,,(B) is given by:

where [3;, is the baseline execution latency for executing an
empty batch on the model, while o, is the latency for each

additional request in the batch.

We find exploiting this relationship helps make better
scheduling and stream grouping decisions. First, larger
batches help amortize the fixed cost B,, and achieve higher
throughput, but too large a batch may miss the SLO dead-
line altogether. As such, making scheduling and preemption
decisions that leverage the batch-latency relationship to prior-
itize appropriately large batches that are likely to meet their
deadline, permit better performance guarantees for the on-
line scheduling algorithm. Second, when scheduling requests
across streams in a serving group of certain models, we find
that the online algorithm can achieve better performance guar-
antees if the models have similar o and [ values (§5.2).

We next describe how SHEPHERD incorporates all of these
insights into an end-to-end design.

3.2 Design Overview

SHEPHERD leverages group-level predictability in a two-level
design that comprises a periodic planning and an online serv-
ing component. At a high-level, the periodic planning compo-
nent leverages long-term load statistics to partition the entire
GPU cluster into several serving groups, and determines how
models and request streams querying them are mapped to
these groups to optimize both resource utilization and system
scalability. The online serving component, on the other hand,
schedules requests from streams in each serving group across
the group’s allocated GPUs, and ensures that its goodput is
always within a constant factor of the optimal schedule.
SHEPHERD’s architecture (Figure 6) comprises four key
components: a planner (HERD), a request router, a scheduler

(FLEX) per serving group and multiple GPU workers. HERD
executes periodic planning, and informs each GPU worker
which serving group it belongs to and which models it must
serve. HERD also assigns a group-level scheduler to each serv-
ing group — the total number of group-level schedulers can
be scaled based on the number of models being served by the
system and the aggregate load across them. The request router
forwards client inference requests to group-level schedulers
based on their target model, and collects statistics regarding
their arrival patterns that HERD employs to compute group-
level mappings. The group-level schedulers, in turn, execute
our online scheduling algorithm, FLEX, to schedule inference
requests across GPU workers in their own serving group.

HERD (§4). While even random assignment of models and
GPU workers to serving groups can achieve decent workload
predictability (§3.1), achieving high utilization and guaran-
teed goodput requires considering a number of additional
constraints. To this end, HERD formulates this assignment
problem as an Integer Linear Program (ILP) incorporating all
such constraints. In particular, as noted in §3.1, colocating
models with similar o, B values (Eq. 1) in the same serv-
ing group yields better goodput guarantees in FLEX. Conse-
quently, HERD also incorporates model-affinity — a measure
of similarity across o, B values — in its ILP.

FLEX (§5). FLEX’s goal is to provide guaranteed high good-
put for each group under short-term unpredictability. To this
end, we answer three key theoretical and practical questions:

* What performance guarantees are possible? We first es-
tablish two impossibility results. We show that determining
an optimal solution is NP-hard, even in the offline setting.
In the online setting, we show that no online algorithm can
achieve performance competitive with the optimal offline so-
lution without using preemption. Since prior model serving
systems do not employ preemption, they are fundamentally
unable to provide any performance guarantees.

¢ What performance guarantees can FLEX provide? FLEX
ensures that for each serving group, the aggregated goodput
achieved is guaranteed to be at most 12.62 - K x worse than
the optimal offline schedule with complete knowledge of
the future. K is a model-affinity parameter that reduces to
one if all models in the serving group have the same o and
B, and increases if they diverge (§5.2).

* How does FLEX achieve this guarantee? FLEX leverages
two key insights outlined in §3.1: preemption to correct
for scheduling errors, and model-specific batch-latency re-
lationships. First, preempting a scheduled batch requires
carefully weighing the utility brought by the scheduled
batch of requests against the utility of the new batch to be
scheduled — the threshold beyond which preemption is per-
formed significantly impacts the performance bound FLEX
can achieve. Second, FLEX leverages the model-specific
relationship in Eq. 1 to determine appropriate batch sizes



Decision variables [ Definition

xij €40,1} Is stream i mapped to group j?
yej €{0,1} Is affinity-set ¢ mapped to group j?
z; €{0,1} Is model k mapped to group j?
sizej € N+ # of GPUs allocated to group j
Input parameters ‘ Definition
mem GPU memory capacity
G Scalability limit for # of GPUs per group
N # of GPUs in cluster
hyi € {0,1} Does stream i use model k?
qex € {0,1} Does affinity-set ¢ include model k?

Optimization goal ‘ Definition

bt (i) ‘ The burst tolerance metric for stream i

Table 2: Variables used in HERD’s ILP.

and their order of execution across request streams.

4 Periodic Planner: HERD

HERD operates in two steps. It first determines the number
of GPUs n; that would be needed to sustain the average load
rate; for each request stream separately. To do so, HERD
empirically measures the maximum goodput 7; each stream
i can achieve on a single GPU, and uses it to compute n; as
%’f’ It uses n; to define a new burst tolerance metric (bt) that
captures the increase in load that the stream can tolerate if
assigned to a particular serving group relative to the average-
load based assignment of GPUs. More formally,

bt (i)

_ #GPUs i can use for its peak load Z sizej - Xij
~ # GPUs i needs for its average load 5 n;

where x;; is 1 if stream i is assigned to group j (0 otherwise),
and size; is the number of GPUs assigned to group j.

Second, HERD uses an Integer Linear Program (ILP) to
combine streams into serving groups to maximize the min-
imum burst tolerance across all streams; this captures the
goal of ensuring every stream can tolerate as heavy a burst as
possible, subject to a certain set of constraints:

(a) Cluster-size limit ensures that the total number of GPUs
assigned across all serving groups is no larger than the
cluster-size N (in number of GPUs).

(b) Group-worker limit ensures that the total number of
GPUs size; assigned to each group j does not exceed the
maximum scalability limit G of the online algorithm.

(¢) GPU-memory limit ensures that the sum of model sizes
assigned a serving group j does not exceed the GPU
memory capacity merm.

(d) Group surjectivity ensures that every stream i is as-
signed to a single group j, and only if its associated
model is also assigned to group j.

(e) Affinity-set surjectivty ensures that models assigned to
the same group ;j have similar o, B values (as defined in
Eq. 1) to ensure better performance guarantees in FLEX.

We capture the divergence in model o, B values as K
(defined in §5), and pre-compute affinity-sets cy,ca, ...
as a partitioning of models such that K between any two
models in an affinity set is < K;; this simplifies our ILP
constraint to only picking models from the same cluster.

Our ILP is presented below, with variables listed in Table 2:

maximize min{bz(i)} 2)

s.t. Zsizej <N, ((a) Cluster-size limit)
J

sizej <G, Vj

Y i lmi| < mem,  Vj

((b) Group-worker limit)
((c) Memory limit)

((d) Group surjectivity)

k
Z)C,'j = 1, Vi
J
hy - xij < zij, Vi,j,k}

Zij: 1) V.]
c

} ((e) Affinity-set surjectivity)
ek Zkj < Yej, Vi, j,k

Note that the above formulation is not linear due to the non-
linear optimization goal, which contains: (1) a max-min term,
and, (2) a product between binary and non-negative variables
(xi; - size;). However, both can be linearized using standard
techniques [22] — we omit the linearized ILP for brevity.
Similar to prior work [6], HERD ensures that all models to
be served by a worker in the subsequent online serving phase
are present in GPU memory, with some memory set aside
for the operation of the online algorithm, FLEX. We discuss
additional challenges due to memory constraints in §8.

HERD complexity and periodicity. Since solving HERD’s
ILP is NP-hard, and we must scale to millions of streams
and thousands of workers, we first aggregate streams using
the same model into a single “model-stream”, then apply the
ILP to optimize the burst tolerance metric across the model-
streams. The burst tolerance metric of the model-stream the
lower bound of the burst tolerance metric for each stream
in it. Note that different streams in the model-stream may
have different SLOs, but this will not affect the correctness
of our ILP, since none of the constraints (a) — (e) depend on
per-stream SLO. Instead, FLEX incorporates the impact of
SLOs across different streams during online serving.

Also, note that we only need to ensure that the ILP solver
is much faster than HERD’s periodicity, which, in turn, de-
pends on how frequently the workload characteristics change
enough to require recomputing group assignments. Fortu-
nately, our analysis of Microsoft’s Azure Function trace [14]
shows that the workloads within moderately-sized serving
groups remain stable for tens of minutes or more, while our
solver can compute a plan within a few seconds (§7.3).



Input variables ‘ Definition

Algorithm 1 FLEX Algorithm

S={ri,r,...} A request stream from one application.
ar,dp,my Arrival time, deadline, model for request r.
a(B),d(B),m(B) | Arrival time, deadline and model for batch B.
B={By,By,...} Set of all possible batches.
Decision variables | Definition

I(B,1,n) € {0,1} [ Is batch B is executed at time 7 on GPU n?

Table 3: Notations for online batch scheduling.

5 Online Serving Algorithm: FLEX

We first formulate the online serving problem (§5.1) and then
present the FLEX algorithm to provide guaranteed goodput
under short-term unpredictability (§5.2).

5.1 Problem Formulation

Our online serving setting focuses on scheduling inference
requests across models and GPUs assigned to a single serving
group. Requests within each stream query the same model
with the same latency SLO. Each request r has an arrival time
ar, deadline d, and queries model m,. Requests are served in
batches; for a batch B, arrival time a(B) is the arrival time of
the most recent request in B, and deadline d(B) is the earliest
deadline of all requests in B. Let B be the set of all possible
batches of requests; the online serving algorithm decides
whether to execute batch B € B at time ¢ on GPU #», which
we capture as the decision variable I(B,¢,n) € {0,1}. The
goal of online serving is to maximize the overall goodput: the
number of requests that meet their SLOs per second. Table 3
summarizes the notations for our problem formulation.
Optimal offline serving algorithm. We find that the of-
fline serving problem where the scheduler has access to the
complete future can be formulated as the following Zero-one
Integer Linear Program (ZILP):

maximize) )" Y [B|-1(B,t,n) 3)

t n BEB
st. Y'Y Y 1Bin)<1, Vro (a)
t n {BlreB}

I(B,t',n) <1, Vi,n  (b)
BEB {1/ |¢' <t<t'+lpy (B)}

a(B)-1(B,t,n) <t, VB,t,n  (c)
(E’WB(B)—’—Z‘)'](BJJL) Sd(B)a VB,Z‘,VL (d)
I(B,t,n) € {0,1}, VB,t,n  (e)

Intuitively, the ZILP maximizes the total number of requests
that meet their latency SLOs across all selected batches
(I(B,t,n) = 1), which in turn maximizes the total goodput.
The ZILP constraints correspond to:

(a) Each request can be executed in at most one batch,
(b) A GPU can only execute one batch at a time,
(c) No selected batch can start before its arrival time,

1: Initialize:
2: for each model m do
3: QO <+ Priority queue of m’s requests sorted by deadlines.

: Event: On completion of a batch on any GPU n:

: By < BATCHGEN(n) # Largest feasible batch across all O,
: Execute By, and dequeue requests in By ;, from model queue
: for each GPU n do

By, <+~ BATCHGEN(n) # Update candidate batch

[N NV N

9: Event: On arrival of request r:
10: Enqueue r to corresponding queue
11: for each GPU n do
12: B, <+ The batch currently being executed on GPU n
13: By, <~ BATCHGEN(n)
14: if B, = 0 then
15: Execute B, , and dequeue requests in By ,
16: else if |Bg ,| > A % |B. | then # Preemption rule
17: Preempt B, ,
18: Execute B, , and dequeue requests in By ,
19: Treat requests in B, as new arrivals (go to Line 11)

(d) Every selected batch must finish before its deadline, and
(e) The decision variable I(B,t,n) must either be 1 or 0.

Clearly, the optimal solution to the above ZILP is also the
optimal offline schedule. Obtaining such an optimal is un-
realistic — not only is it impractical to have access to the
complete future (or even a reasonable prediction of it, §2),
computing the optimal solution to the ZILP is NP-hard [23].

Achievable guarantees. However, the optimal offline sched-
ule provides us with a baseline of the best schedule possible,
and permits us to reason about how close an online algorithm
can get to such a solution. More formally, the performance
guarantee an online algorithm can achieve is typically cap-
tured by the competitive ratio: the worst-case ratio of the
ZILP’s goodput to the online algorithm’s goodput over all
possible inputs. Note that our focus is on online request serv-
ing decisions, so we assume both algorithms have the same
resources provisioned to them. We establish the following
important result regarding the competitive ratio:

Theorem 5.1 No non-preemptive, deterministic algorithm
can achieve a bounded competitive ratio for online serving.

We defer the proof to Appendix A, but note that since existing
online serving algorithms [6, 10, 1 1] are non-preemptive, they
are incapable of achieving a bounded competitive ratio.

5.2 FLEX Algorithm

Algorithm 1 presents our FLEX algorithm that achieves a
bounded competitive ratio for online serving. During initial-
ization, FLEX creates a priority queue Q,, for each model m,
which holds requests sorted by tightness of their deadlines.
The algorithm reacts to two key events: (1) completion event
of a batch on any GPU, and, (2) arrival event of a new request.



For a completion event, FLEX simply generates a new batch
B, and executes it; all requests in B, are dequeued from
corresponding model queue Q,,. To generate the new batch,
FLEX finds the largest feasible batch across all queues, such
that all requests in the batch can meet their latency SLOs.

For an arrival event, FLEX generates a candidate batch for
each GPU as outlined above, and compares it with the cur-
rently running batch. If the generated batch is A times larger
than currently running batch, the current batch is preempted.
If preemption occurs, requests in preempted batch that can
still meet their SLOs are re-enqueued to their corresponding
priority queues. The re-enqueued requests will be treated as
newly arrived requests so they can be scheduled again.

We now dive deeper into salient features of the algorithm.

Choice of A. The preemption threshold A plays a crucial role
in bounding FLEX’s competitive ratio. A conservative pre-
emption policy with larger A can result in a poor competitive
ratio, while an aggressive preemption policy with smaller A
can waste GPU resources, since the preempted work does
not contribute to system goodput. As such, we express the
competitive ratio in terms of A, and formulate the problem
of finding the optimal competitive ratio as an optimization
problem. Solving this problem yields the optimal value of
A = 3.03 (Theorem 5.2). Note that while a worker may expe-
rience cascading preemptions if batches keep arriving with
sizes Ax than the currently executing batch, our choice of A
ensures that the total wasted work is always much less than
the additional useful work performed post-preemption. In
practice, the effect of cascading preemptions is bounded due
to our maximum batch size limit (128 by default). We defer
the description of our preemption implementation to §6.

Prioritizing batches for a single model. Online job schedul-
ing algorithms [19, 20, 24-27] tend to consider one of two
key metrics as optimization goals: a job’s value, and its value
density. In the online model serving context, the value of a
job (batch) corresponds to the number of requests it contains
(i.e., its batch size), while the value density corresponds to
its contribution to system goodput (i.e., %). Tradi-
tional online job scheduling algorithms often fail to achieve a
bounded competitive ratio since optimizing these two goals
are often at odds with each other, i.e., optimizing total value
density comes at the cost of optimizing total value across jobs,
and vice versa. Fortunately, Eq. 1 establishes a linear relation-
ship between value density and value for batches of inference
requests: for a single model, larger batches always contribute
more to system goodput. As such, our preemption and batch
generation criteria always favor larger batches to maximize to-
tal value and value density simultaneously, enabling FLEX to
achieve a bounded competitive ratio. In contrast, prior slack-
based prioritization schemes (e.g., tightest deadline first [10])
are unable to provide such guarantees. In fact, our evaluation
(§7) shows that prioritizing larger batches over those with
tigher deadlines leads to higher goodput under high load.

Extending FLEX to multiple models. While the above pri-
oritization scheme is straightforward when a single model
is involved, extending FLEX’s competitive ratio analysis to
a multi-model scenario is challenging, since the linear rela-
tionship between batch value and value density no longer
holds across models. However, the batch-latency relationship
in Eq. 1 still allows us to bound the batch value and value
density across models using the model-specific parameters o
and B. More precisely, we define an affinity metric A(m;,m;)
between two models m; and m; as:

%+p; ot Bi— B <0
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where o;, 0., B; and B; are the model-specific parameters for
models m; and m; respectively. While its specific formula-
tion is devised to establish FLEX’s competitive ratio (Theo-
rem 5.2), we note that A (m;, m;) is close to 1 if m; and m; have
similar o and B, and deviates from 1 as the o and P values for
the models diverge. For a set of models M, we show that the
competitive ratio is a multiple of K, the largest affinity value
A(mj,m;) across all pairs of models (m;, m;) in M, i.e.,

K = max A(m;,m;
max (mi,mj) (4)

FLEX properties. Our analysis in Appendix B shows that:

Theorem 5.2 Algorithm 1 is 12.62 - K-competitive with pre-
emption threshold A = 3.03, with K defined in Eq. 4.

We note that FLEX is the first algorithm that achieves guar-
anteed performance for online model serving to the best of
our knowledge. We validate FLEX’s performance empirically
over a wide range of representative workloads in §7. Finally,
while we defer the complexity analysis to Appendix C the
following result establishes FLEX’s complexity:

Theorem 5.3 FLEX has a worst-case complexity of O(G),
where G is the number of GPUs in the serving group.

6 SHEPHERD Implementation

Our SHEPHERD implementation follows the architecture de-
scribed in Figure 6. The periodic planner (HERD), request
router and online scheduler are implemented as C++ pro-
cesses, while the GPU workers support configurable model
execution runtimes like PyTorch [28] and Apache TVM [29].

Supporting preemptions. While recent hardware-based pre-
emptions on newer GPUs [31] may enable better perfor-
mance, we opt for software-based preemptions adapted from
Pipeswitch [21] in SHEPHERD due to its general applicabil-
ity to commodity GPUs. Pipeswitch supports preemption of
DNN training tasks by inserting exit points between the train-
ing phases of different DNN layers: when a preemption is
requested, the execution of the current training task can be
terminated at the next exit point. Since PipeSwitch currently
supports preemptions for PyTorch only, we use the PyTorch



Model o, (ms) B (ms) # Exit points
ResNet18 (RN18) 0.22 3.74 40
ResNet34 (RN34) 0.38 5.78 46
ResNet50 (RN50) 0.75 7.96 46
ResNet101 (RN101) 1.25 13.57 39
ResNet152 (RN152) 1.77 18.98 84
ResNeSt50 (RS50) 1.18 15.39 78
ResNeSt101 (RS101) 1.91 29.21 57
ResNeSt200 (RS200) 3.35 45.43 96
ResNeSt269 (RS269) 4.37 74.20 128
DenseNet121 (DN121) 0.69 19.96 129
DenseNet161 (DN161) 1.74 23.10 171
DenseNet169 (DN169) 0.83 27.47 120
DenseNet201 (DN201) 1.12 32.33 142
GoogLeNet (GN) 0.25 8.41 44
Inception v3 (13) 0.96 11.77 122
R-CNN (RCNN) 2.59 14.90 51
BERT (BERT) 40.98 5.67 43

Table 4: DNN Models evaluated in SHEPHERD. BERT [30] is a
popular NLP model, while the rest are popular CV models from six
different model families.

runtime by default in our implementation, although the same
approach could be implemented for Apache TVM as well.
Adapting the preemption approach from training to infer-
ence pipelines introduces a key challenge: while the over-
head for preemption is not a major concern for long-running
model training tasks, it is quite crucial to minimize preemp-
tion overheads for model inference. On one hand, adding too
few exit points to an inference task introduces unacceptable
preemption delay — the time between from the preemption
being requested and actually being completed — since the
preempted task may still execute for tens of milliseconds be-
fore the reaching next exit point. On the other hand, adding
too many exit points slows down the normal execution of
inference tasks, as each exit point introduces non-negligible
execution delay. To better navigate the trade-off, we evaluate
the preemption and execution delay overheads with different
number of exit points for different DNN models via com-
prehensive profiling, and determine the optimal number of
exit points for each individual model (§7.3). Table 4 shows
the DNN models used in SHEPHERD, with their o, B values
(Eq. 1) and the number of exit points. Note that adding exit
points incurs a one-time offline profiling cost during model
registration; this can be implemented as a part of the DNN
framework, making it completely transparent to users.

7 Evaluation

We evaluate SHEPHERD to answer the following questions:

* How does SHEPHERD compare against state-of-the-art
schemes for real-world workloads? (§7.1)

* How does each design component in SHEPHERD contribute
to its performance gains? (§7.2)

* What overheads do SHEPHERD's preemption and periodic
planning components introduce? (§7.3)

Setup. All our experiments were run on Amazon EC2. For
GPU workers, our testbed experiments use 12 p3.2xlarge
instances each with 8 vCPUs, 61GB RAM, and one NVIDIA
Tesla v100 GPU with 16GB memory, while our large-scale
emulations use m4.16xlarge instances with 64 vCPUs and
256GB RAM. The request router, periodic planner, and online
schedulers are deployed on separate m4.16xlarge instances.

Metrics. We focus on goodput, utilization and scalability as
our key metrics. Goodput and utilization values are averaged
over 5 runs, while scalability is measured as the increase in
system goodput on increasing the number of workers.

Compared schemes. We compare SHEPHERD against Clock-
work [10] and Nexus [6]. Clockwork is representative of
online global scheduling policies, while Nexus is a represen-
tative of the periodic per-stream approach (§1). We implement
all evaluated policies in our SHEPHERD prototype and use a
PyTorch-based runtime to ensure that the performance differ-
ences are solely due to the scheduling decisions rather than
choices in system implementation or the underlying runtime.
For Nexus, we set the reconfiguration period to 60 seconds
as recommended in [6]. Moreover, since Nexus is designed
for predictable workloads, we adapt their algorithm to pro-
vision for the peak demand in every 60-second window of
the workload to ensure it can sustain the provided load. For
SHEPHERD, we set the GPU group-worker limit to 12, since
we found it to be large enough to ensure workload predictabil-
ity (due to a large enough group size) while being well within
our scheduler’s scalability limit. The GPU memory limit for
p3.2xlarge instances is large enough to fit all 13 DNN models.
Finally, we place all the models in a single affinity-set.

DNN Models. We evaluate SHEPHERD with 17 DNN models
widely used for model inference (Table 4), taken from Py-
Torch Hub [32]. For Clockwork and Nexus, we use models
without any exit points (needed for preemption in SHEPHERD,
§6) to ensure they do not suffer any performance penalties
for execution delays. We ensure the models remain in GPU
memory for the duration of all our experiments to eliminate
performance impacts of loading models into GPU memory.

Workloads. Similar to prior work [10], we use the Microsoft’s
publicly-released production traces from Azure Functions
(MAF) [14] as a representative production model serving
workload. MAF interleaves a wide range of workloads, includ-
ing heavy-sustained, low-utilization, bursty and fluctuating
workloads. For our 13 profiled DNN models, we assign the
46,000 streams from MAF to models in a round-robin man-
ner, and configure all streams with a default SLO of 250ms?2,
unless otherwise specified. The MAF trace only contains the
aggregated number of requests per one-minute interval for
each request stream. Therefore, we generate two request ar-

2We use a relatively relaxed SLO compared to [10] since the PyTorch
runtime used in our implementation observes longer inference latencies
compared to the TVM runtime used in [10].
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Figure 8: Latency CDFs for MAF-stable workload with 250ms
SLO. The latency CDF is presented for the set of requests admitted
by each approach. At high load, large portions of Clockwork and
Nexus request latencies are close to the SLO, while SHEPHERDs
request latencies are distributed more evenly. See §7.1 for details.

rival patterns within each one-minute interval: (1) a Poisson
process to model stable workloads, similar to [10] (“MAF-
stable”), and (2) a more bursty Markov-modulated Poisson
process (MMPP) similar to [9] (“MAF-bursty”).

7.1 SHEPHERD in the Wild

We first evaluate the compared systems for real-world work-
loads on a testbed comprising 12 GPU workers and large-scale
emulations that mimic work done by a GPU on CPU cores.

Performance variation with load (Figure 7). For the MAF-
stable workload, with a low request arrival rate (e.g., at ~ 3k
requests/second), all systems can meet the SLO deadlines for
most requests in the workload. As such, both SHEPHERD and
Clockwork achieve high system utilization (over 95%) and
high goodput. At higher loads, while both systems are consis-
tently busy serving requests (resulting in high utilization) nei-
ther SHEPHERD nor Clockwork can satisfy all request dead-
lines; however, since Clockwork prioritizes requests based on
how close their deadline is, it greedily schedules many small
batches of requests with tight deadlines, resulting in a reduced
goodput. In contrast, SHEPHERD always prioritizes execution
of larger batches, while the use of preemption ensures that
large batches never get blocked by small batches scheduled
before them. SHEPHERD can therefore efficiently utilize lim-
ited GPU resources to maximize goodput under high load,
and while Clockwork’s goodput starts to saturate beyond a
load of 6k requests/second, SHEPHERD’s goodput keeps in-

creasing, outperforming Clockwork by up to 4.6x at 144k
requests/second. We confirm that SHEPHERD’s gains stem
from its preemption and prioritization design choices in §7.2.
We observe similar trends for Clockwork and SHEPHERD
under the MAF-bursty workload.

For Nexus, we find that the goodput largely remains the
same as we increase the load under both MAF-stable and
MAF-bursty workloads, with a goodput that is up to 7.1 x and
18.1x lower than SHEPHERD. Moreover, Nexus’s utilization
remains under 89% for the MAF-stable workload and 55%
for the MAF-bursty workload — even under high load. These
observations can largely be attributed to Nexus’s offline ap-
proach — during its periodic planning phase, Nexus takes the
arrival rate as input and calculates the number of GPU work-
ers required along with an offline schedule for each worker.
With a fixed number of workers, Nexus can only make its
planning decision assuming a specific arrival rate that it can
completely satisfy, which ends up being much lower than the
applied load. Moreover, during online serving phase, Nexus is
unable to adjust its planning decisions dynamically based on
the increased arrival rates. This impact is even more severe for
the MAF-bursty workload, where predetermined execution
plan is unable to adapt to periodic bursts of requests, resulting
in even lower utilization (1.8 x worse than SHEPHERD) and
goodput relative to the MAF-stable workload.

Figure 8 plots per-request latency CDFs for SHEPHERD,
Clockwork, and Nexus at low (3k requests/second) and high
load (144k requests/second) for the MAF-stable workload.
Note that while Figure 7(a) shows the proportion of requests
admitted by each system, the CDF only depicts the latency
of requests admitted by each solution. All systems observe
similar latency distributions at low load (Figure 8(a)). At
high load, however, a large portion of requests in Clockwork
observe latency close to the SLO, since Clockwork prioritizes
serving requests closer to their deadlines. Nexus also shares a
similar CDF pattern, as its periodic scheduler tries to batch
together as many requests as it can based on request deadlines.
In contrast, SHEPHERD’s request latencies are distributed
more evenly; this is because SHEPHERD priortizes requests
based on their batch sizes rather than their deadlines, and
the evaluated workload results in batches of widely varying
sizes at different times. We observe similar trends under the
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Figure 10: Scheduler scalability with emulated workers. For both
workloads, Clockwork does not scale beyond 200 workers; Nexus
scales linearly but observes 40-50% lower goodput than SHEPHERD.
SHEPHERD observes both high goodput and linear scaling.

MAF-bursty workload.

Goodput with varying request SLOs (Figure 9). To under-
stand the impact of request SLOs, we fix the arrival rate to
~ 3k requests/second and measure the goodput for the com-
pared approaches with varying SLO values. All approaches
achieve high goodput with 500ms SLO, since almost all re-
quest deadlines can be met with a relaxed SLO. On reducing
SLO from 500ms to 50ms, all approaches observe reduced
goodput; Clockwork’s reduction is smaller due to its online al-
gorithm that prioritizes requests with tighter deadlines, while
Nexus observes higher reduction, especially for the MAF-
bursty workload. This is because its periodically computed
static execution plan is unable to adapt to small bursts of
requests, resulting in even fewer requests meeting their dead-
lines. However, SHEPHERD’s online FLEX algorithm is able
leverage prioritization and preemption to maximize the num-
ber requests that meet the stringent SLOs, outperforming both
Clockwork and Nexus by up to 1.3 x and 38 respectively.

Scheduler scalability (Figure 10). Due to the limited num-
ber of GPUs in our testbed, we were unable to evaluate the
scalability of SHEPHERD and existing systems beyond a point.
We therefore complement our testbed experiments with large-
scale emulations with up to 400 emulated workers. As in
prior work [10], an emulated worker is identical to a real
SHEPHERD worker, except an inference request triggers no
meaningful work; instead, they wait for a period of time de-
termined by the corresponding model’s batch-latency charac-
teristics (Table 4), before returning a response. We run the
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Figure 11: Understanding SHEPHERD benefits. (a) Prioritiza-
tion and preemption in SHEPHERD results in 3.7x and 6.2x im-
provement in goodput, respectively; SHEPHERD-NP refers to a non-
preemptive variant of SHEPHERD. (b) SHEPHERD achieves both
high goodput and scalability with group-worker limit G = 12.

MAF-stable and bursty workloads with varying number of
emulated workers (IV), scaling up the total load applied to the
system with the number of workers. We apply a low enough
load per worker to ensure any requests dropped in SHEPHERD
and Clockwork are solely due to the scheduler’s failure to
scale to large number of workers.

Clockwork’s goodput scales linearly with smaller N, slows
down around N = 150, and saturates at 50k request/second
around N = 200 since its centralized scheduler becomes the
bottleneck? (Figure 10(a)). Nexus goodput, on the other hand,
scales almost linearly with N; this is expected since Nexus’s
scheduling decisions are computed per-stream and updated
only periodically. However, its periodically computed sched-
ule results in ~ 40% lower goodput than SHEPHERD. This
is because Nexus’s computed schedule conservatively pro-
visions for a load that a given number of workers can sus-
tain without adapting to any changes due to workload unpre-
dictability, as discussed in the results for Figure 7. Finally,
SHEPHERD observes both consistently high goodput and lin-
ear scaling. The linear scaling is attributed to SHEPHERD
dividing its workers into groups, each with a group-worker
count of 12, which is below the scalability limit of our online
scheduler. The high goodput, on the other hand, is attributed
to each group being large enough for efficient multiplexing
across request streams. As such, SHEPHERD outperforms
Clockwork and Nexus by 2.5x and 1.8x respectively in
terms of goodput at N = 400 workers. We note, however, that
SHEPHERD employs multiple schedulers — specifically, (%1
schedulers for N workers — in contrast to Clockwork’s single
centralized scheduler to achieve its linear scaling. We observe
similar trends with the MAF-bursty workload in Figure 10(b).

7.2 Understanding SHEPHERD Benefits

We now dig deeper into how each design component in SHEP-
HERD contributes to its overall performance gains.

Benefits of FLEX (Figure 11(a)). To demonstrate the effec-

3This trend is consistent with the scalability results reported in the Clock-
work paper [10] albeit with a higher peak goodput due to differences in the
system implementation and execution runtime.



tiveness of batch prioritization and preemption in FLEX, we
create a synthetic workload with two streams. Stream A is
bursty and issues requests to the low-latency model ResNet18
(~ 4ms for batch size = 1, ~ 32ms for batch size = 128).
Requests in stream A arrive periodically in bursts of 1024
requests at t = Sms, 125ms, 245ms, ..., i.e., with a period of
120ms. Stream B is stable and issues requests to the high-
latency model ResNet269 (79ms for batch size = 1), and has
individual requests arriving at t = Oms, 1ms, 2ms ...; note that
in the absence of other queued requests from stream B, any
approach would schedule batches of size 1 for it every lms.

We provision one GPU worker for both streams, and com-
pare the performance for SHEPHERD and Clockwork for this
workload. To decouple the contributions of preemption from
prioritization, we also evaluate a non-preemptive variant of
SHEPHERD that retains all the properties of FLEX except pre-
emption. We run the experiments under two different SLOs
(250ms and 90ms) to separate the contributions of prioritiza-
tion and preemption in SHEPHERD, as described next.

For 250ms SLO, both SHEPHERD and non-preemptive
SHEPHERD outperform Clockwork by 3.7x. Since Clock-
work prioritizes requests with tighter deadlines, it always ends
up prioritizing high-latency requests of stream B over low-
latency requests of stream A. In contrast, SHEPHERD'S batch
generation prioritizes larger batches — since stream A’s low-
latency requests can accumulate much larger batches under
the 250ms SLO (e.g., 128 sized batches with 32ms latency)
and achieve much higher goodput. Prioritizing stream A’s
requests allows SHEPHERD to leverage the limited GPU re-
source to complete more requests in the same time span. In
more detail, after a batch of stream B (comprising a single
request) scheduled at time ¢ = lms completes after 79ms,
SHEPHERD prioritizes stream A’s queued requests over the
remaining requests of stream B. With an SLO of 250ms, most
requests in stream A can meet their SLO deadlines, permitting
SHEPHERD to achieve high goodput even without preemption.

However, with a reduced SLO of 90ms, non-preemptive
SHEPHERD cannot complete executing larger batches of
stream A’s requests within their SLO deadline since it waits
for stream B’s batch to finish (i.e., at # = 80ms). Thus, the per-
formance for non-preemptive SHEPHERD is similar to Clock-
work — most of stream A’s requests fail to meet their dead-
line. With preemption, a large batch of stream A’s requests
preempts the scheduled (much smaller) batch of stream B’s
requests, allowing most requests of stream A to finish within
the deadline. As such, SHEPHERD outperforms both its non-
preemptive variant and Clockwork by 6.2 x. Note that the per-
formance for heuristic-driven and non-preemptive approaches
can be made arbitrarily worse than SHEPHERD by increas-
ing stream A’s burst size and reducing its request execution
latency, as discussed in §2.2 and Theorem 5.1, respectively.

Benefits of HERD (Figure 11(b)). We use the same setting
as the large-scale emulation in §7.1 and vary the number of
group-worker limit G for HERD (§4). With a group-worker
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Figure 12: Preemption overheads. The preemption delay and ad-
ditional execution delay relative to the normal batch executions for
most of our evaluated models remains below 5%.

# streams | # models | # workers | solver | network | loading

200,000 200 200 0.55 0.19 0.71
400,000 400 400 2.51 0.35 1.23
600,000 600 600 4.28 0.51 1.84
800,000 800 800 8.53 0.62 2.41

1,000,000 1,000 1,000 13.26 0.90 3.14

Table 5: Components of the periodic planning latency (in seconds).

limit of G = e, SHEPHERD always chooses a group size
equal to the number of workers. As such, it reduces to the
online global approach, observing the same scalability limit
as Clockwork (Figure 10). With a group-worker limit of G =
1, SHEPHERD cannot efficiently multiplex across streams,
leading to constantly lower goodput compared to SHEPHERD
with multiple workers. As such, HERD allows SHEPHERD to
achieve a goodput that is 2.5 and 1.7x higher than the two
grouping alternatives, respectively, at 400 workers.

7.3 Understanding SHEPHERD Overheads

Finally, we evaluate the preemption and periodic planning
overheads in SHEPHERD to show that neither impact SHEP-
HERD’s performance benefits in any significant manner.

Preemption overheads (Figure 12). As discussed in §6,
efficient preemption should minimize two overheads: (1) pre-
emption delay, or the time between from the preemption being
requested and actually being completed, and (2) execution
delay, the additional latency introduced by exit points for
normal batch execution. We achieve a reasonable trade-off
between these two overheads by specifically tailoring appro-
priate number of exit points for each model listed in Table 4.

We measure the relative preemption overheads introduced
by SHEPHERD, i.e., the preemption and execution delay rela-
tive to normal batch execution time, averaged over batch sizes
1-128. For most models, both the preemption delay and the
extra execution delay are well below 5%.

Periodic planning overheads in HERD (Table 5). The pe-
riodic planning latency in HERD consists of three parts: (1)
the solver latency for solving the ILP (Eq. 2), (2) the network
latency for broadcasting the plan to schedulers and workers,
and, (3) the loading latency for loading the models from CPU
memory to GPU on each worker. We run large-scale emula-



tion to divide the system into 10 serving groups, and measure
these latencies with different number of streams, models, and
emulated workers. The solver latency accounts for most of
the planning time, taking 13.26 seconds for 1 million streams
and 1k workers. Network latency is always less than a sec-
ond, while model loading time increases with the number of
models. Even so, the total planning latency is always much
smaller than HERD’s scheduling period, which is tens of min-
utes. Moreover, the solver and network latency for the next
planning phase can be pipelined with the current online serv-
ing phase, ensuring that planning is never a bottleneck.

8 Discussion and Caveat

‘We now outline avenues of future research in SHEPHERD.

Group predictablility under different workloads. Al-
though we have demonstrated group predictability using two
representative workloads, we note that the number of streams
(i.e., group size) to achieve sufficient group predictability may
be different for real-world workloads. With insufficient pre-
dictability, HERD may under or overprovision resources for
some groups, although FLEX would still provide the same
performance guarrantee within each group since it does not
rely on predictability. Moreover, group predictability itself
is rooted in statistical multiplexing theory, and holds when
a large enough number of request streams in the workload
have statistical independence [33—-35]. While well-exploited
in the networking community to achieve high utilization under
bursty network traffic patterns [15—18], more in-depth quanti-
tive analysis of group predictability for real-world inference
serving workloads is important future work.

Model affinity vs. degree of multiplexing. Recall from
§4 that HERD includes an affinity-set surjectivty constraint,
which requires that models assigned to the same group j have
divergence less than K. With a small K, HERD will break mod-
els into more groups, with each group containing fewer but
more similar models, i.e., models with similar model affinity
values. While this enables tighter performance guarantees in
FLEX, it also reduces the degree of multiplexing within each
group, since GPU workers in each group can serve streams
across a smaller set of models. Although a single affinity
group (i.e., K=oo) yields a looser competitive ratio, our evalu-
ation shows that it still results in high empirical performance
for the MAF workload. Finding an optimal value of K is
promising future work.

Fairness across request streams. Similar to prior serving
system designs [6, 10], we focus on the isolated GPU cluster
settings where fairness across request streams and models is
not a major concern. Fairness can be an important metric to
extend our design to multi-user or cloud scenarios.

Dynamic model swapping. Similar to prior work [6], SHEP-
HERD only loads models onto GPU memory at the start of
a planning period. An alternative solution is to dynamically
swap models between GPU and CPU memory on-demand dur-

ing online serving [10]. However, since such swaps are likely
to take much longer than serving a request, its cost must be
weighed against the potential performance gains from swap-
ping in a new model. We leave incorporating this decision as
a part of online serving as future work.

Large DNN models. If a DNN model is so large that it
cannot be co-located with other models in GPU memory,
HERD must place it in an isolated group with reduced degree
of multiplexing. It is possible, however, to break such large
models into smaller partitions [36] to group them with other
models for better multiplexing.

9 Related Work

We discussed existing model serving systems in §2; we now
discuss prior work related to SHEPHERD in other areas.

Preemption for ML workloads. PipeSwitch [21] allows
preempting a training tasks to execute an inference task.
Irina [11] applies preemption to improve average latency for
inference tasks. LazyBatching [8] is an inference system that
can preempt and stall the currently ongoing batch. SHEPHERD
leverages preemption approaches outlined in these works to
achieve guaranteed high goodput. Concurrent to our work,
REEF [31] leverages ISA support for preemptions [37, 38]
in recent AMD GPUs to enable us-scale preemptions. While
our current implementation still implements preemptions in
software, it can readily incorporate hardware-based preemp-
tions. Future improvements in this space will only improve
SHEPHERD’s performance further.

Online job scheduling. The theory community has long
considered issues of prioritization and preemption in online
job scheduling [19,20,24-27]. Its adaptation to model serv-
ing, however, has a few nuances — the scheduler for model
serving must also decide how to optimally execute requests
across batches while taking into account model-specific batch-
latency relationships. Our scheduling algorithm exploits both
to achieve strong performance guarantees.

10 Conclusion

We have presented SHEPHERD, a distributed a DNN model
serving system. SHEPHERD employs a periodic planner that
aggregates request streams into moderately-sized groups for
high utilization and scalability, and an online scheduler that
employs a novel online algorithm to provide guaranteed good-
put. Evaluation over production workloads shows that SHEP-
HERD achieves 17.2 % higher goodput and 1.8 x higher utiliza-
tion than prior approaches and scales to hundreds of workers.
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A Competitive Ratio without Preemption

Theorem A.1 No non-preemptive, deterministic algorithm
can achieve a bounded competitive ratio for online serving.
Proof Consider a batch X; with |X;| =1, lx, =1landdy, =1
that arrives at time ¢ = 0. A deterministic non-preemptive al-
gorithm B serves X; with probability p = {0, 1}. We consider
two scenarios after the scheduling decision at # = 0: (A) no
request arrives afterwards, and therefore, the optimal solution
has a total value of 1, and algorithm B has a total value of p;
(B) another batch X; arrives at time 7 = € with |X3| = @ — oo,
lx, = 1 and dx, = 1 + &: the optimal solution can achieve a
total value of ® by ignoring X, and algorithm B has a total
value of p+ (1 — p) - o, since it is non-preemptive.

Note that the competitive ratio should be no less than the
ratio between the optimal solution over algorithm B in either
scenario. As such, by combining both cases we show the
competitive ratio ¢ of algorithm B should be no less than:

1 (0}
¢> max (—,—————) o 5)
p:{o.,l}(p p+(1—p)~03)

which completes the proof |

B Competitive Ratio Analysis for FLEX

We define a schedule G to be a sequence of batch executions
(B, 1), where 1p is the start time of batch B in the schedule G.
Note that since we allow preemption, some batches may get
preempted and never complete; we use 6 C G to denote the
set of completed batches in ¢ and 67 C & to denote the set
of preempted batches. We say a schedule ¢ is feasible if (1)
at any time, at most one batch B € ¢ is executing, and, (2) a
request is completed (i.e., executed without being preempted)

in at most one batch B € 6¢. Let v(6) = ¥, v(B,t) denote the
Beo
aggregated value of all batches in 6. We have,

v(6) =v(c) +v(c?) (6)

We use standard competitive analysis to evaluate our algo-
rithm. We denote the schedule due to an algorithm A as 6 4,
and the optimal schedule constructed by a computationally
unbounded offline algorithm as ¢,.. We say that algorithm A
is c-competitive if for any request stream we have:

c-v(c69) > v(oy) (7

To better differentiate batch sequences (B,¢) between
schedule 6 4 and o, we denote the batch sequences in 6 4
as (I,t7) and batch sequences in G, as (J,#;). Moreover, for
a batch I € 64, we denote its (1) start time as #7; (2) value
(batch size) as |I]; and (3) duration as ¢;. The same notation
rules apply to J € C,.

We prove our main result in Theorem 5.2 in three steps.
First, we consider a simplification of the online batch schedul-
ing algorithm that only considers online batch scheduling for
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Figure 13: The value assignment rule from one / € 6 4 to Js € G,.
G LAY ti o Gl
Op b— os | i
¢ b o
t; Ji g +10) i g +10)

@]J; € o* blocked by I; € g, b)J; € o” covered by I; € o,

Figure 14: The block and cover relationship between batches in
64 and G.. Note that if J is identical to / then J is covered by [ (by
our definition of blocking).

a single model running on a single GPU (§B.1). We then
extend the setting to include multiple models deployed on a
single GPU (§B.2), and finally consider the general case of
multiple models deployed across multiple GPUs (§B.3).

B.1 Single-GPU Single-Model Setting (sgsm)

For the single GPU, single model setting our key result is:
Theorem B.1 Algorithm I is 10.81-competitive with a single
model on a single GPU with preemption threshold A =~ 2.38.
Proof To prove the above theorem, we bound the value of
batches in the optimal schedule (6.) by the value of completed
batches in A’s schedule (6% ). To this end, our analysis builds
on the value assignment approach employed in [19,20]. This
approach operates in two steps:

1. Mapping. First, we map each batch in 64 to a set of
batches in G, in a manner that ensures each batch in G, is
matched to at least one batch in 6 4. This mapping identifies
batches in G, that are related to batches in G 4, either be-
cause they overlap in their execution durations, or the batches
contain common requests. More formally we define three
relationships to compare a batch J € 6, withabatch/ € 64
(Figure 14):

ML. Jis blocked by Iift; <t; <t;+4£; <ty+4;.
M2. Jis covered by I ifty <tyand t;+¢; > t;+ 4.

Ma3. J is intersected by I if neither R1 or R2 hold, and 3r
such that,r € I and r € J.

We say J is temporally related to [ if either R1 or R2 holds,
and spatially related if R3 holds.

2. Assignment. We assign values from each batch I € 6 4 to
its mapped batches J € o, which we denote as v,(I,J). This
assignment must satisfy two properties. First, it should be
feasible, i.e., for any I € G 4 its total assignment to all batches
in G, should be equal to the value of I:

Z Va(l,.]) = |I|a

Jeo,

VI€Eoy ®)



Second, the assignment should be bounded, i.e., the total value
assigned from all I € 6 to to all J € 6, must be greater
than or equal to a constant portion of the aggregated value of

JGG*:
Y Y vt )=r Y )

JeoxIec JEo,

where r € [0, 1] is a constant. Note that for an assignment that
is both feasible and bounded, we have:

v(ch)= Y |

‘
I€65,

=Y Y vJ)

lec Jeo,

=Y Y v (10)

Jeoslech

> Y re|J]

Jea,
>r-v(0y)

Based on the definition of competitive ratio in Eq. 7, Eq.
10 suggests a competitive ratio of ¢ = %

The key tasks that remain are defining a feasible and
bounded assignment v,, and quantifying the bound r achieved

by this assignment.

Defining the value assignment v,: We are now ready to define
our value assignment; as Figure 13 shows, a batch I in 64
may cover n batches J.| to J, (see M2), block at most one
batch J, (see M1) and intersect m batches J;; to J;;, (see M3).
Our value assignment rules are as follows:

* Al. For a batch J,, that [ blocks, v,(I,Jp) = x1 - |1].

* A2. For a batch J, that I covers, v,(I,J.) = x2 - |1| - %, ie.,
the assigned value is proportional to the duration of J.
Moreover, since the total duration of all covered batches
Je1 to Jg, is no more than ¢;, the total assignment across
Jety <oy Jen 18 N0 more than x; - |1].

* A3. For a batch J; that [ intersects, we assign a value of x3
to J; for every request that is common between I and J;, i.e.,
va(I,Ji) = x3 - [INJ;]. Since each request will be executed
at most once in G, the total assigned value from [/ across
all J; is no larger than x3 - |1|.

* Ad4. If the total assigned value from 7 is less than |I|, we

assign the residual value of 7 to any arbitrary J € G,.

It is clear to see that the above assignment ensures that the
total assignment from any batch I € 6 4 to all J € 6, equals |/,
i.e., satisfies the feasibility constraint Eq. 8, if (x; +x2 +x3) <
1. Next, we quantify for each batch J € o, the lower-bound
r to satisfy the boundedness constraint (Eq. 9).

3. Determining the bound r: A key challenge in determining
the bound r for value |J]| relative to the value assigned to
it, as per the boundedness constraint Eq. 9, is that a batch
I € 64 and a batch J € o, can be related both temporally and
spatially as outlined in our mapping step. As such, each such

case requires analysis for the bound. As a concrete example,
consider a batch J blocked by a batch I (as per M1). One
possible reason J is not executed in G 4 is because a subset
JE C J of requests may already have been dequeued from
O in 6 4 and thus will not be executed again. Based on the
dequeue condition in Algorithm 1, J is the subset of all
requests in J that have already completed in G 4 at time #;. On
the other hand, it may be the case that J is not executed in G 4,
because the value added by subset of requests JX C J that still
remain to be executed (i.e., JR =J \JE ) is less than twice the
value of the batch executed by G 4 in its place, namely /.

To accurately capture the impact of both of the above ef-
fects in determining the bound r, we define virtual batches
J® and JE for each batch J € G, as above (see Figure 15). We
denote the fraction of requests in J which belong to JX as p,
so that JE contains the remaining 1 — p fraction of requests.
Note that p can take different values in [0, 1] for different J in
G, Since the value of a batch equals batch size, we have:

[ =p- 1|
. (11)
¥ = (1=p)- ]
Our next step is to determine the bound r based on JX and

JE independently (rg and rg, respectively), and take the tighter
of the two as our final lower bound, i.e., r = max(rg,rg).

Determining rg based on JR: We first consider the lower-
bound bound imposed on the value of J by only considering
the virtual batches J. To this end, we confine ourselves to
assignment rules Al and A2 corresponding to blocked and
covered batches, respectively.

* Case 1: I € 64 blocks JR. Since J® is blocked by 1, it
must be the case that |[J®| < A |I]; otherwise JX would
have preempted / in 64 at time #;. Combined with the
assignment rule A1, this gives us:

Y va(1, ) > x -1

Ieoy

1
- (5ol (12)

=x1-5-p-|J|

+ Case 2: ] € 64 covers JX. To determine the lower bound
in this case, we exploit two properties. First, since / covers
JR, é[ > EJR, i.e.,

by > U (13)

Second, we exploit the property that a given model can al-
ways execute larger batches with smaller latency per record.
Since I covers J,

LA

V7 14
o O (14)



Ii Ii

I;

04— o4 | | o4 | |
Ji(R) “(R Ji(R) “(R) Ji(R)
“(R)  —— ] — —
g (R) Jj 7 ( ) L Jj 1 ? L Jj 1
o F / o b 1 o" r 1
(a) Case 1 (b) Case 2a (c) Case 2b

Figure 15: All possible conditions in 6 4 for a batch J € 6... Here schedule 6. (R) denotes the batch sequence of (J(R),?7).

Finally, as Figure 15(b)-(c) shows, this case can be further
broken down into the following two sub-cases based on the
relation between I and the real batch J:

— Case 2a: I blocks J. Assignment A1 gives us:

Y vall.d) > xi- ]

Icoy

| R

>x)-— 4
e (15)
AU

=y - N

X1 O i§
>x1-p-|J|

— Case 2b: [ covers J: Assignment A2 combined with
Egs. 13 and 14 applied to J gives us:

Y val,J) > x2- \1| —

Ico 4
L g, (16)
7>
>)C2-‘J|

Note that in this case we do not need consider J® to
determine the bound since [ directly covers J.
 Case 3: If neither of the above cases occur, then 6 4 must be
idle at time #;. This implies that JR must have been empty
(i.e., p = 0), otherwise JX would have been scheduled in
G 4. Therefore, the following trivial bound holds:

Z va(l,J) > p-|J| =

Icoy

a7

Combining all the cases (Eq. 12, Eq. 15, Eq. 16 and Eq. 17),
we have for any J € G,:

Z va(I,J) >m1n(p ad

Icc g

x2)- Y| (18)

Note that we omit the term from Case 3, since the corre-
sponding inequality is dominated by % -x1-p with x; < 1.
Similarly, the term from Case 2a is also omitted since it is
dominated by Case 1.

Aggregating both sides of Eq. 18 over all J € 6., we get:

min(p Y vi<Y Y v

JEGCK Jeoleoy

=Y Y v

1€6 4 JEO,

=X |

Icoy

=v(c4)

19)

Next, we show how we can upper-bound v(c4) by v(6%).
Note that batches in 6 4 can form a chain based on the pre-
emption relation. For each chain, the next batch on the chain
preempts the previous one, and each chain must ended with a
batch in 6. We denote the chain which ends with batch |/
as chain(I). Denote v(chain(I)) as the value of all the batches
in chain(I), since each batch in 6 4 will be covered by exactly
one chain, we have

Z v(chain(I)) =

‘
I€cS,

Y. ll[=v(oa)

Icoy, (20)
Moreover, based on the preemption rule we have that for each
chain, the value of the ith batch in the chain must be no less
than Ax the value of the i — Ith batch. As such, v(chain(I))
must be no higher than }%1 X

v(0%) =

L v(chain(I))

2L

== LM

Ico 4

A—1
iy v(oa)

Combined with Eq. 6, we have,

>

v(oa) <

v(0%)

=57 2 I

- c
Iect,

T X valld)

JGG*IEGA

>>
> |
—_

(22)
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Combining Egs. 19 and 22, we get:

A1 :
Y Y vld) > T.min(pkxl ) Y U @3

Jeosleoy JEO,

This gives us a bound rg = % -min(5t x2).

Determining rg based on JE : Note that all requests in J¥ must
have been completed in 6 4. So based on our assignment rule
A3, any request in J¥ must have been assigned a value of
x3 from one completed batch from G% (the set of completed
batches in 6 4). The above observation permits bounding |/|
based on JF as follows:

Y va1.0)> Y x3-|INJ|
Iec$y Iecy

> x3- |77

=(1—=p)-x3-|J]
Aggregating both sides of Eq. 24 over all J € 6., we get
re = (1—=p)-xs.
4. Determining the optimal competitive ratio: Combining
the bounds rg and rg, we get the final competitive ratio:

1

24

Cogom :max(rR, rE)
B 1 (25)
min {max{% -min{ & v}, (1-p)-x3}}
pel0,1]

To minimize the value of ¢y, We can select appropriate
values of xp, x, and x3 subject to the feasibility constraint
x1 +x2 +x3 < 1, and select appropriate value of A € (1,0).
Note, however, that we cannot select p — it can take arbitrary
values in [0, 1]; as such, we have to consider the worst-case
value for p to compute the competitive ratio. This provides
us the following optimization problem:

min _ Cygem
X1,X2,%3,h

s.t. xj+xt+x <1 (26)
Il <A<oo

Solving the above optimization problem (via numerical
methods [39]) yields the minimal value for cg, =~ 10.81
with preemption threshold A = 2.38. |

B.2 Single-GPU Multi-Model Setting (sgmm)

We now extend our analysis to the setting with k£ models
{my,...,my} deployed on a single GPU. The competitive anal-
ysis for the multi-model case also leverages the linear rela-
tionship between batch size and batch execution latency: for
model m;, the execution latency for a batch B is a; - |B| + B,
where o; and [3; are model-specific constants

Theorem B.2 Algorithm I is 10.81 - K-competitive with mul-
tiple models on a single GPU, with preemption threshold
A= 2.38 and K defined in Eq. 4

Proof The proof shares a similar structure with the single-
GPU, single-model case, and is identical until we determine rg
based on JX. Even so, the analysis for Case 1 is still the same,
since the preemption rule remains unchanged. For Case 2,
however, Eq. 14 no longer holds, since with multiple models,
a batch with larger length may have a smaller value density
than a batch for a different model. However, with Eq. 1 we
can replace Eq. 14 with:

JIRL
g] e‘/R

Now we show why Eq. 27 always holds. Assume / and J
are batches for models m; and m; respectively. We have

K 27

AR I

Cr M|~ on-[R+By
<L-(OL _|_B)
~ dy - [JR|+ B2 e (28)
_ W (u+Br)
o IR+ By
<K

Note that Line 1 to Line 2 is based on the implicit constraint
that || > 1 since it can only take integer values.

To further improve the bound, we notice that as ¢; > /&
always holds in Case 2, with Eq. 1 we have

o - |14 B > o - [JR| + B2

0 %]+ B> — i @9)

= || >
o

On one hand, if o + B — By > 0, we have o - |[JR| + B2 —
B1 > 0. Then we can replace I in the first line of Eq. 28 with
Eq. 29:

@ . ﬁ — 7‘JR| '((xl +E)

b 1| o |[JR]+ P2 ]

< Tl Br-ay )

o - [JR|+ B2 o - [JR| 4 B2 — Bi

I .(0‘1'(OLZ'\JR|+I32*I31)+I31‘OL1

oo R[4 B, o - |JR| + B2 — B

_ A .(Oﬁl'az'|JR|+0€1-[32)

o [JR[+By o R[4+ B2 — B
o - (0 - [J%] +B2)
o - [JR|+ B2 — i

(o +

)
(30)

o
o - IR+ B2
0(,1~|JR‘
o - |JR|+ B2 — Bi
<K

Then for Case 2a we will have:
Y vl 7) > x1-|1|

Icoy
(31
cp-lJ

Y

K



For Case 2b we have:
4
Y va(l,J) > x2- 1] gl
Icoy 1 (32)
x - |J]
K
The analysis for Case 3 and JZ is the same as the single

model case. Similar to Eq. 25, by combining all cases we can
calculate the competitive ratio csgm, for the multi-model case:

1
min (max (2 - min(Z2, 281, 2), (1 - p) -x3))

pel0.1]
(33)

Csgmm =

Since K > 1, combining Eqgs. 33 and 25 gives us:

Csgmm <K- Csgsm Vx1,%2,X3, P, A (34)
As such, Algorithm 1 can always achieve a competitive ratio
of 10.81 - K for the single-GPU, multi-model setting. |

B.3 Multi-GPU Multi-Model Setting (mgmm)

Finally, we extend our analysis to the general case with k
models {mj,...,m;} and N GPUs. The major difference lies
in the per-GPU preemption rule for the request arrival event —
the new preemption rule ensures that at any time, no available
batch will have a value Ax higher than the value of the cur-
rently running batches on any GPU. Moreover, the modified
dequeue rule ensures that in the multi-GPU case, a request is
completed in at most one batch in G 4.

We have the following theorem for the general case.

Theorem B.3 For the multi-GPU, multi-model case, Algo-
rithm 1 is 12.62 - K-competitive with preemption threshold
A = 3.03, with K defined in Eq. 4.
Proof The proof follows the same structure as the single-
GPU, single-model setting as well. Define the schedule 6.4 (1)
as the schedule of Algorithm A on GPU u € [1,N] and 6.(v)
as the optimal schedule on GPU v € [1,N]. We have 64 =
U, 0.4 (u) and o, = |, 6.(v). Moreover, we define (u,v) as
a GPU pair between the schedule 6.4 (1) and 6.(v).

Value assignment rule between GPU pair (u,v) We apply

a similar value assignment rule in the basic case for each

GPU pair (u,v) in the general case. The major difference lies

in assignment rules A1 and A2, where we evenly spread the

value for I from each 6.4 (u) to all 6,(v) with different v.

* Al. For a batch J, € o.(v) that I € 64 (u) blocks,
va(l,Jp) = 7 - 11].

* A2. For a batch J. € 6.(v) that I € 64(u) covers,
Vall Je) = 51| 7.

* A3. For a batch J; € 6,(v) that I € 6.4 (u) intersects, we
assign a value of x3 to J; for every request that is common
between I and J;, i.e., v, (I,J;) = x3- [INJ].

* A4.1If the total assigned value from I € 64 (u) is less than
1], we assign the residual value of I to a random J € G..(v).

Similar to the basic case, the above pair-wise assignment
rule ensures the following property:

Feasibility: For any GPU u € [1,N], with (x; +x+x3) < 1,
the total assignment from any batch I € 6.4 () to all J in all
6.(v) equals |I|. That is:

Z Z Va(I"]):U‘a

ve[l,N]Jeo,(v)

Vieoa(u) (35

Boundedness: Similar to the basic case (Eq. 9), the assignment
should be bounded. Here we want to show that the total value
assigned from all 7 in all 6% (u) to all batches J in all G (v)
must be greater than or equal to a constant portion of the
aggregated value of J in all 6,(v). That is:

Y Y X Y wunzry Y

ve[l,N]J€6x (v) ue[1,N] 1€6% (u) ve([l,N]Jeo,(v)
(36)

where r € [0,1] is a constant. Note that similar to the basic
case (Eq. 10), for an assignment that is both feasible and
bounded, we have:

vel)= Y Y M
ue[1,N]1€65 ()
= Y, v
ve[l,N]J€C,(v) ue(1,N] I€6 (u) (37)

Y

Y Y rul

ve[1,N]J€o.(v)

v

r-v(oy)

Eq. 37 suggests a competitive ratio of ¢ = %
Determining the bound r: The key task that remains is to
quantify the bound r achieved by the assignment. Similar to
the basic case, this is done by bounding the values of J for
each 6,(v) by values of I for each 6 4 (1), based on both the
JE and JR parts.

Determining rg based on JR: We can apply the same analysis
as in the basic case for each GPU pair (u,v). Note that for
Case 1, the modified preemption rule ensures that at any time,
no available batch in 6 4 will have a value Ax higher than the
value of the currently running batches on any GPU. As such,
the J® from any GPU « must have a value no higher than A x
the value of the 7 blocks it in any u, which indicates:

X
Y vt > ﬁl 1|

IEGA(M)
xa o boge
X,
N 3Pl



Moreover, the analysis for Case 2 and Case 3 follows the
same logic. Formally, for any u and J € c,(v) we have:

-y Yl

k ol W Case 1
,  Case2a
Y, vald)> szI 7 (39
I1€G 4 (u) KN > Case 2b

p-J, Case 3

Since the above equation holds for each 6.4 (1), we have:

Y X

u€[1,N|1€c 4 (u)

X1-p X1-p Xz) 1]

S zmin(== 0k

(40)

Aggregating both sides of Eq. 39 over all J in all 6.(v), we

get:
Y M

min(x1 P AP )2)

AT KK ve[l,N]J€a.(v)
<Y Y Y Y vy
ve[l,N]Jeo(v) ue[l,N]I1€G 4 (u) “41)

=Y XY I

u€[1,N|I€c 4 (u)
= V(Gﬂ)
Next, we bound v(6 4 ) by v(6¢; ). We apply the same chain
analysis as we did for the basic case for each 64 (u). More
specifically we have:

Z v(chain(I)) = Z 7]

Vu € [1,N]

16 (u) Iec 4 (u) (42)
Then based on the preemption rule we have:
u€(l, N]IGG%(H)
Z Z v(chain(I))
]IecA (43)
= T . Z Z ||
u€[1,N|1€0 4 (u)
=2 vow)
Combining Eqgs. 41 and 43, we get:
ve([l,N]Jeo, (v)ue(l,N] Iecﬂ(u)
44)
A—1 . xi°p x1°p x2 (
>——min(——, =7, 2) Y Y M
A A kK K ve[1,N]J€o,(v)

This gives us a bound rg = % min (=52 =P 2.

Determining rg based on JE : Note that based on the dequeue
and preemption rule in Algorithm 1, some request in J¥ may
not have been completed in G 4. Instead, it only ensures that
for any J € 6,(v), all requests in the corresponding JX must

have been (or being) executed in some o 4 (u). Since each of
the requests in JZ gets assigned a value of x3 (based on A3),
we have the following bound:

Y Y wen=Y)Y )Y lunJ
u€[1,N|1€0 4 (u) u€[1,N|1€c 4 (u)
> x3- ||
=(=p)-x3-|J

(45)

Note that Eq. 45 is in the exact same form as Eq. 40. So
following the same procedure from Eq. 41 to Eq. 44 we can
get:

Y, vl

ve[l,N]J€Gx(v) ue(1,N] €6 (u)

S (ROR M M

vE[1,N]J€o,(v)

(40)

This gives us a bound rg = b(1 —p)-x3.

Determining the optimal competitive ratio c,gn,: Com-
bining the bounds r and 7g, we get the final competitive ratio:

1
_ 1
AL min {max{min(ZL, 28, 2),(1—p) - x3}}
pef0.1]

(47)
Similar to the basic case, we can select appropriate values
of x1, X2, x3 and A to minimize ¢ygmm-

min _ Cmgmm
X1 ,X2,X3,A

s.t. xi+x+x3<1 u
I <A<eo

Solving the above optimization problem yields the maximal
value for ¢ygmm =~ 12.62 x K with preemption threshold
A~ 3.03.

C Complexity Analysis for FLEX

Theorem C.1 FLEX has a worst-case complexity of O(G),
where G is the number of GPUs in the serving group.

Proof Batch generation (Algorithm 2) has a complexity of
O(|M] - |Q|) where |M] is the number of models queues with
newly enqueued requests since last update, and |Q| is the
largest queue size among these model queues. For each re-
quest arrival event, batch generation is triggered O(G) times.
Moreover, between every two invocations, at most one model
queue changes. Therefore, M| is at most 2 for each invocation
(Line 2 in Algorithm 2). In addition, since each preemption
will increase the size for the running batch by at least A x, each
GPU can only be preempted by at most O(log) (|Q])) times.



Algorithm 2 Batch generation algorithm in FLEX

1: procedure BATCHGEN(n)

2: M < models with newly enqueued requests or currently
running on GPU n

3: for each model m € M do

4: Dequeue requests passing their deadlines from Q(m)
# Line 5-13: Find largest feasible batch By (n,m) for model m

5 Candidate request set S < Q(m)

6: if B.(n) uses model m then

7 S + Q(m) UB.(n)

8: Bg(n,m) <0

9: for request r in S with ascending deadline do
10: if 7 can meet SLO with batch size |Bg(n,m))| then
11: Add r to Bg(n,m)
12: else

13: Break

14: Bg(n) < Bg(n,m) with largest batch size among all models

15: Return B, (n)

As such, the re-enqueue event (Line 19 and 11) will be trig-
gered by at most O(log) (|Q])) times for each GPU. The com-
plexity of enqueue operation is O(log(|Q|)) (Line 10), and
the complexity of re-enqueue operation is O(|Q| + |B.(n)])
(Line 19). Note that |B.(n)| can never be larger than |Q| by
definition. Note that |Q| and A are constants. Based on the
above analysis, the total complexity for each request arrival
event and batch completion event is O(G). Similar analysis
applies for each batch completion event. Taken together, FLEX
has an overall complexity of O(G). ]
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